设4阶方阵A=,则A的逆矩阵A-1=____________.
已知当x→0时,(1+ax2)1/3-1与cosx-1是等价无穷小,则常数a=__________.
已知两条直线的方程是 l1:(x-1)/1=(y-2)/0=(z-3)/(-1);l2:(x+2)/2=(y-1)/1=z/1.则过l1且平行于l2的平面方程是____________.
由方程xyz+=√2所确定的函数z=z(x,y)在点(1,0,-1)处的全微分dz=____________.
设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
求一个正交变换,化二次型f=x12+4x22+4x32-4x1 x2+4x1 x3-8x2 x3成标准形.
设4阶矩阵B=,C=,且矩阵A满足关系式A(E-C-1 B)T CT=E,其中E为4阶单位矩阵,C-1表示 C的逆矩阵,CT表示 C的转置矩阵,将上述关系式化简并求矩阵A.
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明:在(a,b)内至少存在一点ξ,使得f' (ξ)>0.
设矩阵T=,T以及D可逆,证明(A-BD-1 C)-1存在,并求T-1,其中A,B,C,D为适当维度的矩阵。
设A为方阵,g(λ)是A的最小多项式,f(λ)为任意多项式.证明:f(A)可逆⇔(f(λ),g(λ))=1.
设矩阵A=,E=,则逆矩阵(A-2E)-1=________.
设矩阵A=仅有两个不同的特征值.若A相似于对角矩阵,求a,b的值,并求可逆矩阵P,使P-1AP为对角矩阵.
设A=E-ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置,证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A是不可逆矩阵.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.(1)证明B可逆;(2)求AB-1.
已知三维向量空间的基底为α1=(1,1,0)T,α2=(1,0,1)T,α3=(0,1,1)T,则向量β=(2,0,0)T在此基底下的坐标是____________.
设S1,S3为实对称矩阵,S2为实矩阵,则矩阵S=为正定矩阵的充要条件为矩阵S3与矩阵S1-S2 S3-1 S2'皆为正定矩阵。
设A为实对称矩阵。证明当实数t充分大之后,tI+A是正定矩阵,其中I表示单位矩阵。
设A,B,C,D都是n×n矩阵,且|A|≠0,AC=CA,证明=|AD-CB|.
设A=,A*为A的伴随矩阵,则|(1/4 A)-1 - 15A* |=________.
设A是n阶正定矩阵,B为n阶实方阵,证明:(1)若B'=B,则AB的特征值为实数;(2)若B正定,则AB的特征值皆大于0;(3)若B正定,且AB=BA,则AB正定。
设A=,B=且A与B相似.(1)求α,β的值;(2)求可逆阵P使P-1 AP=B.