计算题(1987年理工数学Ⅰ

求幂级数1/(n∙2n) xn-1的收敛域,并求其和函数.

答案解析

因为ρ=(|an+1|)/(|an|)=(n2n)/((n+1)2n+1 )=1/2,所以收敛半径R=2,收敛区间为(-2,2).当x=2时,级数1/2n发散,当x=-2时,级数(-1)n-1 1/2n收敛,所以幂级数1/(n∙2n ) xn-1 的收敛域为[-2,2).令S(x)=1/(n2n ) xn =1/n (x/2)n ,则S^' (x)=1/2 (x/2)n-1...

查看完整答案

讨论