幂级数n/(2n+(-3)n) x2n-1的收敛半径R=________.
设(a×b)∙c=2,则[(a+b)×(b+c)]∙(c+a)=________.
设A为n阶非零方阵,A*是A的伴随矩阵,AT的转置矩阵,当A*=AT时,证明|A|≠0.
已知点A与B的直角坐标分别为(1,0,0)与(0,1,1).线段AB绕z轴旋转一周所成的旋转曲面为S.求由S及两平面z=0,z=1所围成的立体体积.
设f(x)在x=0的某一领域内具有二阶连续导数,且f(x)/x=0,证明级数f(1/n)绝对收敛.
设f(x)具有二阶连续导数,f(0)=0,f'(0)=1,且[xy(x+y)-f(x)y]dx+[f'(x)+x2y]dy=0为一阶全微分方程,求f(x)及此全微分方程的通解.
计算曲面积分∬S(xdydz+z2dxdy)/(x2+y2+z2 ),其中S是由曲面x2+y2=R2及平面z=R,z=-R(R>0)所围成的立体表面的外侧.
判断函数列fn(x)=(x/n)ln(x/n)在区间(0,1)上的一致收敛性(说明理由).
设f(x)是周期为2的周期函数,它在区间(-1,1]上定义为f(x)=,则f(x)的傅里叶级数在x=1处收敛于______.
设函数f(x)=x2,0≤x<1,而S(x)=bnsinnπx,-∞<x<+∞,其中bn=2f(x)sinnπxdx,x=1,2,3,…,则S(-1/2)等于【 】
已知级数(-1)n an=2,a2n-1 =5,则an 等于【 】
将函数f(x)=2+|x|(-1≤x≤1)展开成以2为周期的傅里叶级数,并由此求级数1/n2 的和.
设f(x)=,则其以2π为周期的傅里叶级数在点x=π处收敛于__________.
设函数f(x)=πx+x2 (-π<x<π)的傅里叶级数展开式为a0/2+(ancosnx+bnsinnx),其中系数b3的值为__________.