已知级数(-1)n an=2,a2n-1 =5,则an 等于【 】
A、3
B、7
C、8
D、9
若连续函数f(x)满足关系式f(x)=f(t/2)dt+ln2,则f(x)等于【 】
随机地向半圆0<y<(a为常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积与正比,则原点和该点的连续与x轴的夹角小于π/4的概率为__________.
若随机变量X服从均值为2、方差为σ2的正态分布,且P{2<X<4}=0.3,则P{X<0}=________.
设4阶方阵A=,则A的逆矩阵A-1=____________.
已知当x→0时,(1+ax2)1/3-1与cosx-1是等价无穷小,则常数a=__________.
已知两条直线的方程是 l1:(x-1)/1=(y-2)/0=(z-3)/(-1);l2:(x+2)/2=(y-1)/1=z/1.则过l1且平行于l2的平面方程是____________.
由方程xyz+=√2所确定的函数z=z(x,y)在点(1,0,-1)处的全微分dz=____________.
设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
设a1,a2,⋯,an是n个实数,都落在区间(-1,1)里.(1)证明 ∏1≤i,j≤n(1+aiaj)/(1-aiaj )≥1(2)找出以上不等式中等号成立的充分必要条件.
设n为正整数,y=yn (x)是微分方程xy' - (n+1)y=0满足条件yn(1)=1/n(n+1)的解.(1) 求yn (x);(2) 求级数yn(x)的收敛域及和函数.
函数f(z)=1/(z-1)(z-2)在圆环区域:(1) 0<|z|<1;(2) 1<|z|<2;(3) 2<|z|<+∞;内是处处解析的。试把f(z)在这些区域内展成洛朗级数。
求级数xn/(ln(n!))的收敛半径,并讨论收敛区间端点的收敛情况.
如函数f(x)在[0,+∞)上一致连续,且无穷积分f(x)dx收敛,证明:f(x)=0.
设f(x)在[0,+∞)上非负连续,n是正整数,若f(x)dx存在,则f(x)dx收敛.
设cn(x)在[0,1]上非负连续(n=1,2,…),cn(x)在[0,1]上一致收敛,令Mn=cn(x),问Mn 是否收敛?用(xn(1-x))/lnn验证上面的结论.