填空题(1988年理工数学Ⅰ

若在区间(0,1)内任取两个数,则事件“两数之和小于6/5”的概率为______.

答案解析

17/25或0.68

讨论

进行一系列独立复生试验,每次成功概率为P,则在成功2次前失败3次的概率为__________。

设A,B为两事件,且P(A)=1/2,P(B)=1/3,P(A│B)=1/6,则P(A ̅│B ̅ )=【 】

甲袋中有2个红球3个白球,乙袋中也有2个红球3个白球,现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取2个球。求最后取出的2个球全是白球的概率。

仓储市场成箱出售水果,每箱20只,假设各箱含有0、1、2只坏果的概率分别为0.8、0.1、0.1。一顾客准备购买一箱水果,他任取出一箱,然后从中随机察看4只若没发现坏果则买下该箱否则退回。求:(1)顾客买下该箱水果的概率p1;(2)当顾客买下该箱水果时,里面确实没有坏果的概率p2。

一个盒子中有4个球,分别标有号码0、1、1、2。现从该盒子中有返回地抽取2个球,设X为两个球上号码的乘积,求:X的分布律。

若事件A、B独立,则A、B至少有一个发生的概率表示为【】

三个人以相同的概率被分配到4个不同房间中任一间,则前三个房间各有一个人的概率为【 】

袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第2个人取行得黄球的概率是________.

设A,B是两个随机事件,且0<P(A)<1,P(B│A)=P(B|A ̅),则必有【 】

设A,B,C满足:A,B互不相容,A,C互不相容,B,C相互独立,P(A)=P(B)=P(C)=1/3,则P[(B∪C)│(A∪B∪C) ]=__________.

设在一次试验中,事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________;而事件A至多发生一次的概率为__________.

一批产品共有10个正品和2个次品,任意抽取两次,每次抽1个,抽出后不再放回,则第二次抽出的是次品的概率为__________.

随机地向半圆0<y<(a为常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积与正比,则原点和该点的连续与x轴的夹角小于π/4的概率为__________.

设A,B为n阶矩阵,E为单位矩阵.若方程组Ax=0与Bx=0同解,则【 】

设随机变量X~U(0,3),随机变量Y服从参数为2的泊松分布,且X与Y的协方差为-1,则D(2X-Y+1)=【 】

设X1,X2,…,Xn为来自均值为θ的指数分布总体的简单随机样本,Y1,Y2,…,Ym为来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中θ(θ>0)是未知参数.利用样本X1,X2,…,Xn,Y1,Y2,…,Ym求θ的最大似然估计量θ ̂,并求D(θ ̂).

若微分方程y''+ay'+by=0的解在(-∞,+∞)上有界,则【 】

设X1,X2,⋯,Xn为来自总体N(μ1,σ2)的简单随机样本,Y1,Y2,⋯,Ym为来自总体N(μ2,2σ2)的简单随机样本,且两样本相互独立,记X ̅=1/n Xi ,Y ̅=1/m Yi ,S12=1/(n-1) (Xi-X ̅ )2 ,S22=1/(m-1) (Yi-Y ̅ )2 ,则【 】

设X1,X2为来自总体N(μ,σ2)的简单随机样本,其中σ(σ>0)是未知参数.若σ ̂=a|X1-X2 |为σ的无偏估计,则a=【 】

设曲线y=y(x)(x>0)经过点(1,2),该曲线上任一点P(x,y)到y轴的距离等于该点处的切线在y轴上的截距.(Ⅰ)求y(x);(Ⅱ)求函数f(x)=y(t)dt在(0,+∞)上的最大值.