设X1,X2,⋯,Xn为来自总体N(μ1,σ2)的简单随机样本,Y1,Y2,⋯,Ym为来自总体N(μ2,2σ2)的简单随机样本,且两样本相互独立,记X ̅=1/n Xi ,Y ̅=1/m Yi ,S12=1/(n-1) (Xi-X ̅ )2 ,S22=1/(m-1) (Yi-Y ̅ )2 ,则【 】
A、S12/S22 ~F(n,m)
B、S12/S22 ~F(n-1,m-1)
C、2S12/S22 ~F(n,m)
D、2S12/S22 ~F(n-1,m-1)
设X1,X2,⋯,Xn为来自总体N(μ1,σ2)的简单随机样本,Y1,Y2,⋯,Ym为来自总体N(μ2,2σ2)的简单随机样本,且两样本相互独立,记X ̅=1/n Xi ,Y ̅=1/m Yi ,S12=1/(n-1) (Xi-X ̅ )2 ,S22=1/(m-1) (Yi-Y ̅ )2 ,则【 】
A、S12/S22 ~F(n,m)
B、S12/S22 ~F(n-1,m-1)
C、2S12/S22 ~F(n,m)
D、2S12/S22 ~F(n-1,m-1)
D
设随机变量X服从参数为1的泊松分布,则E(|X-EX|)=【 】
已知向量α1=,α2=,β1=,β2=,若γ既可由α1,α2线性表示,也可由β1,β2线性表示,则γ=【 】
已知n阶矩阵A,B,C满足ABC=0,E是n阶单位矩阵,记矩阵,,的秩分别为γ1,γ2,γ3,则【 】
已知an<bn (n=1,2,⋯), 若级数an ,与bn 均收敛,则“an 绝对收敛”是“bn 绝对收敛的”【 】
若微分方程y''+ay'+by=0的解在(-∞,+∞)上有界,则【 】
若函数f(x)在[a,b]上连续(b>0),在(a,b)内可导,且f(a)=0,证明:存在ξ∈(a,b),使得f'(ξ)=ξf(ξ)/(b-ξ).
设某产品寿命服从正态分布即Z ~ N(10,22)分布,试求任取5件中恰有2件寿命超过产品期望寿命的概率。
若随机变量X服从参数λ=1的指数分布,则P(-2<x<2)=__________。
设随机变量X~U(0,3),随机变量Y服从参数为2的泊松分布,且X与Y的协方差为-1,则D(2X-Y+1)=【 】
求微分方程x2y'+xy=y2满足初始条件y|x=1=1的特解.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设物体A从点(0,1)出发,以速度大小为常数v沿y轴正向运动,物体B从点(-1,0)与A同时出发,其速度大小为2v,方向始终指向A,试建立物体B的运动轨迹所满足的微分方程,并写出初始条件.
设区域D为x2+y2≤R2,则∬D(x2/a2 +y2/b2 )dxdy=____________.
已知α=[1,2,3],β=[1,1/2,1/3],设A=αTβ,其中αT是α的转置,则An=________________.
已知A,B两个事件满足条件P(AB)=P(A ̅B ̅),且P(A)=p,则P(B)=________.
相互独立的两个随机变量X,Y具有同一分布律,且X的分布律为:X 0 1P 1/2 1/2则随机变量Z=max{X,Y}的分布律为:______________________________.
设f(x)具有二阶连续导数,f(0)=0,f'(0)=1,且[xy(x+y)-f(x)y]dx+[f'(x)+x2y]dy=0为一阶全微分方程,求f(x)及此全微分方程的通解.
设3阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=____________.
设X和Y为两个随机变量,且P{X≥0,Y≥0}=3/7,P{X≥0}=P{Y≥0}=4/7,则P{max(X,Y)≥0}=________.