设四元线性齐次方程组(Ⅰ)为,又知某线性齐次方程组(Ⅱ)的通解为k1 (0,1,1,0)+k2 (-1,2,2,1).
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设四元线性齐次方程组(Ⅰ)为,又知某线性齐次方程组(Ⅱ)的通解为k1 (0,1,1,0)+k2 (-1,2,2,1).
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
(1)由题设,(Ⅰ)的系数矩阵为,易求得其基础解系为(0,0,1,0),(-1,1,0,1),其通解为k3(0,0,1,0)+k4(-1,1,0,1).(2)令k1 (0,1,1,0)+k2 (-1,2,2,...
查看完整答案已知点A与B的直角坐标分别为(1,0,0)与(0,1,1).线段AB绕z轴旋转一周所成的旋转曲面为S.求由S及两平面z=0,z=1所围成的立体体积.
设f(x)在x=0的某一领域内具有二阶连续导数,且f(x)/x=0,证明级数f(1/n)绝对收敛.
设f(x)具有二阶连续导数,f(0)=0,f'(0)=1,且[xy(x+y)-f(x)y]dx+[f'(x)+x2y]dy=0为一阶全微分方程,求f(x)及此全微分方程的通解.
计算曲面积分∬S(xdydz+z2dxdy)/(x2+y2+z2 ),其中S是由曲面x2+y2=R2及平面z=R,z=-R(R>0)所围成的立体表面的外侧.
设A=(α1,α2,α3,α4)为4阶正交矩阵,若矩阵A = ,β = ,k表示任意常数,则线性方程组Ax=β的通解为x=【 】
设线性方程组Ax=b的系数矩阵A=。(1)试求能使Jacobi迭代法收敛的a的取值范围;(2)对该方程组写出Jacobi迭代格式(设b=(b1,b2,b3)T已知)。
对方程组,试问用Jacobi迭代和Gauss-Seidel迭代是否收敛?为什么?
设f(x)=,则f(x)=0的根为____________.
设A为n阶方阵,A*为A的伴随矩阵且A11≠0,b≠0,其中A11为A的a11对应的代数余子式.证明:AX=b有无穷多个解⟺b是A* X=0的解.
已知方程组I:,方程组II:问a,b为何值时方程组I和方程组II有相同的解?并求此相同解。
设X1=(0 2 0)T,X2=(-3 3 2)T是方程组的两个解,求此方程组的一般解。
设x1-x2=a1,x2-x3=a2,x3-x4=a3,x4-x5=a4,x5-x1=a5。证明此方程组有解的充分必要条件为ai =0。
设A为m×n矩阵,非齐次线性方程组Ax ̅=β ̅有唯一解的充分必要条件为:______________.
当λ,μ为何值时,方程组有惟一解?无解?有无穷解?无穷解时并求其全解.
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)必是【 】