已知向量组α1,α2,α3,α4线性无关,则向量组【 】
A、α1+α2,α2+α3,α3+α4,α4+α1线性无关
B、α1-α2,α2-α3,α3-α4,α4-α1线性无关
C、α1+α2,α2+α3,α3+α4,α4-α1线性无关
D、α1+α2,α2+α3,α3-α4,α4-α1线性无关
已知向量组α1,α2,α3,α4线性无关,则向量组【 】
A、α1+α2,α2+α3,α3+α4,α4+α1线性无关
B、α1-α2,α2-α3,α3-α4,α4-α1线性无关
C、α1+α2,α2+α3,α3+α4,α4-α1线性无关
D、α1+α2,α2+α3,α3-α4,α4-α1线性无关
C
设常数λ>0,且级数an2 收敛,则级数(-1)n |an |/【 】
二元函数f(x,y)在点(x0,y0)处两个偏导数fx' (x0,y0 ),fy' (x0,y0)存在是f(x,y)在该点连续的【 】
设M=sinx/(1+x2)cos4x dx,N=(sin3x+cos4x )dx,P=(x2sin3x-cos4x)dx,则有【 】
相互独立的两个随机变量X,Y具有同一分布律,且X的分布律为:X 0 1P 1/2 1/2则随机变量Z=max{X,Y}的分布律为:______________________________.
已知A,B两个事件满足条件P(AB)=P(A ̅B ̅),且P(A)=p,则P(B)=________.
已知α=[1,2,3],β=[1,1/2,1/3],设A=αTβ,其中αT是α的转置,则An=________________.
设区域D为x2+y2≤R2,则∬D(x2/a2 +y2/b2 )dxdy=____________.
设A是n×n实对称矩阵,证明:存在一个实数k使得对任意一个实n维向量x都有|x' Ax|≤kx'x,其中x'表示向量x的转置.
已知四维实矢量空间的矢量(表示成矩阵):=,满足如下条件:以及T∙=9/4(其中,T表示对矩阵取置换),试求出所有这样的四维实矢量的集合:{ }=?
向量组α1=(1 1 k),α2=(1 k 1),α3=(k 1 1)是线性无关的,则k=__________.
n维向量组α1,α2,…,αs (3≤s≤n)线性无关的充要条件是【 】
已知向量α1=,α2=,α3=,β=,γ=k1 α1+k2 α2+k3 α3,若γTαi=βTαi (i=1,2,3),则k12+k22+k32=______.
设α1,α2,…,αr是n维向量.令β1=α2+α3+⋯+αr,β2=α1+α3+⋯+αr,…,βr=α1+α2+⋯+αr-1.证明向量组β1,β2,…,βr与向量组α1,α2,…,αr有相同的秩.
已知同维数的两个向量组有相同的秩,且其中之一可用另外一个线性表示,证明:这两个向量组等价。
设向量组A:α1,α2,… ,αs可以由向量组B:β1,β2,… ,βt线性表示且R(A)=R(B).证明向量组A与向量组B等价.
设xoy在平面上n个结点Mi(xi,yi ),i=1,2,…,n(n≥3).证明:M1,M2,…,Mn在同一条直线上⟺R=2.
设对角矩阵A的特征多项式为 φ(λ)=(λ-λi)ni (诸λi两两互异),求所有和A可交换的矩阵全体所组成的线性空间的维数.