设A是n×n实对称矩阵,证明:存在一个实数k使得对任意一个实n维向量x都有|x' Ax|≤kx'x,其中x'表示向量x的转置.
设A,B,C,D都是n×n矩阵,且|A|≠0,AC=CA,证明=|AD-CB|.
设A是一个n×n实矩阵,秩(A)=1,证明A2=kA,其中k为一实数.
设α1,α2,…,αr是n维向量.令β1=α2+α3+⋯+αr,β2=α1+α3+⋯+αr,…,βr=α1+α2+⋯+αr-1.证明向量组β1,β2,…,βr与向量组α1,α2,…,αr有相同的秩.
设B为一r×r矩阵,C为一r×n矩阵.如果BC=C,问B=E是否成立?若成立,证明之;若不成立,举出反例,并给出使B=E的充要条件。其中E为单位矩阵.
已知向量α1=,α2=,α3=,β=,γ=k1 α1+k2 α2+k3 α3,若γTαi=βTαi (i=1,2,3),则k12+k22+k32=______.
设α1=,α2=,α3=,α4=,若向量组α1,α2,α3与α1,α2,α4等价,则λ的取值范围是【 】
已知向量α1=,α2=,β1=,β2=,若γ既可由α1,α2线性表示,也可由β1,β2线性表示,则γ=【 】
向量组α1=(1 1 k),α2=(1 k 1),α3=(k 1 1)是线性无关的,则k=__________.
n维向量组α1,α2,…,αs (3≤s≤n)线性无关的充要条件是【 】
已知四维实矢量空间的矢量(表示成矩阵):=,满足如下条件:以及T∙=9/4(其中,T表示对矩阵取置换),试求出所有这样的四维实矢量的集合:{ }=?
设α1=,α2=,α3=,则三条直线a1 x+b1 y+c1=0,a2 x+b2 y+c2=0,a3 x+b3 y+c3=0,(其中ai2+bi2≠0,i=1,2,3)相交于一点的充要条件是【 】
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明向量组α,Aα,…,Ak-1α是线性无关的.
设向量组A:α1,α2,… ,αs可以由向量组B:β1,β2,… ,βt线性表示且R(A)=R(B).证明向量组A与向量组B等价.
设xoy在平面上n个结点Mi(xi,yi ),i=1,2,…,n(n≥3).证明:M1,M2,…,Mn在同一条直线上⟺R=2.
设R^3上的线性变换A(x)=x,则α=生成的A-循环不变空间的维数为________.