设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明向量组α,Aα,…,Ak-1α是线性无关的.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明向量组α,Aα,…,Ak-1α是线性无关的.
设有常数λ0,λ1,…,λk-1,使得λ0 α+λ1 Aα+⋯+λk-1 Ak-1 α=0,则有Ak-1 (λ0 α+λ1 Aα+⋯+λk-1 Ak-1 α)=0.从而λ0 Ak-1 α=0.由题设A...
查看完整答案已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4,可以经过正交变换=P化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
设正向数列{an}单调减少,且(-1)nan 发散,试问级数(1/(an+1))n 是否收敛?并说明理由.
求[sin(π/n)/(n+1)+sin(2π/n)/(n+1/2)+⋯+sinπ/(n+1/n)]
计算曲面积分I=∬Σ (axdydz+(z+a)2dxdy)/(x2+y2+z2 )1/2 ,其中Σ为下半球面z=-的上侧,a为大于零的常数.
确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x4+y2 )λ i-x2 (x4+y2 )λ j为某二元函数u(x,y)的梯度,并求u(x,y).
求直线l:(x-1)/1=y/1=(z-1)/-1在平面π:x-y+2z-1=0上的投影直线l0的方程,并求l0绕y轴旋转一周所成曲面的方程.
设α1,α2,…,αr是n维向量.令β1=α2+α3+⋯+αr,β2=α1+α3+⋯+αr,…,βr=α1+α2+⋯+αr-1.证明向量组β1,β2,…,βr与向量组α1,α2,…,αr有相同的秩.
已知同维数的两个向量组有相同的秩,且其中之一可用另外一个线性表示,证明:这两个向量组等价。
设向量组A:α1,α2,… ,αs可以由向量组B:β1,β2,… ,βt线性表示且R(A)=R(B).证明向量组A与向量组B等价.
设xoy在平面上n个结点Mi(xi,yi ),i=1,2,…,n(n≥3).证明:M1,M2,…,Mn在同一条直线上⟺R=2.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设α1=,α2=,α3=,则三条直线a1 x+b1 y+c1=0,a2 x+b2 y+c2=0,a3 x+b3 y+c3=0,(其中ai2+bi2≠0,i=1,2,3)相交于一点的充要条件是【 】
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩是______.
已知二次型f(x1,x2,x3 )=2x12+3x22++3x32+2ax2 x3 (a>0)通过正交变换化成标准形f=y12+2y22+5y32,求参数a及所用的正交变换矩阵.
设A是n×n实对称矩阵,证明:存在一个实数k使得对任意一个实n维向量x都有|x' Ax|≤kx'x,其中x'表示向量x的转置.
已知四维实矢量空间的矢量(表示成矩阵):=,满足如下条件:以及T∙=9/4(其中,T表示对矩阵取置换),试求出所有这样的四维实矢量的集合:{ }=?
设R2中的内积为(α,β)=α' Aβ,A=,则,在此内积之下的度量矩阵为________.
向量组α1=(1 1 k),α2=(1 k 1),α3=(k 1 1)是线性无关的,则k=__________.
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.