设正向数列{an}单调减少,且(-1)nan 发散,试问级数(1/(an+1))n 是否收敛?并说明理由.
设正向数列{an}单调减少,且(-1)nan 发散,试问级数(1/(an+1))n 是否收敛?并说明理由.
由已知正向数列{a_n}单调减少,根据单调有界必有极限知,极限)an 存在,记a=an,则有an≥a≥0,如a=0,则由莱布尼兹判别法得交错级数(-1)n an收敛,这与已知条件矛盾,所以a>0....
查看完整答案求[sin(π/n)/(n+1)+sin(2π/n)/(n+1/2)+⋯+sinπ/(n+1/n)]
计算曲面积分I=∬Σ (axdydz+(z+a)2dxdy)/(x2+y2+z2 )1/2 ,其中Σ为下半球面z=-的上侧,a为大于零的常数.
确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x4+y2 )λ i-x2 (x4+y2 )λ j为某二元函数u(x,y)的梯度,并求u(x,y).
求直线l:(x-1)/1=y/1=(z-1)/-1在平面π:x-y+2z-1=0上的投影直线l0的方程,并求l0绕y轴旋转一周所成曲面的方程.
设A,B是两个随机事件,且0<P(A)<1,P(B│A)=P(B|A ̅),则必有【 】
已知函数y=y(x)在任意点x处的增量Δy=yΔx/(1+x2)+α,且当Δx→0时,α是∆x(∆x→0)的高阶无穷小,y(0)=π,则y(1)等于【 】
设a1,a2,⋯,an是n个实数,都落在区间(-1,1)里.(1)证明 ∏1≤i,j≤n(1+aiaj)/(1-aiaj )≥1(2)找出以上不等式中等号成立的充分必要条件.
函数f(z)=1/(z-1)(z-2)在圆环区域:(1) 0<|z|<1;(2) 1<|z|<2;(3) 2<|z|<+∞;内是处处解析的。试把f(z)在这些区域内展成洛朗级数。
求幂级数(3+(-1)n)n/n xn的收敛半径,并判断它在收敛区间端点的收敛情况.
证明:(1)级数 sin(2nπx)/2n 在区间(-∞,+∞)上连续;(2)函数f(x)=sin(2nπx)/2n 在任何区间上不能逐次求导.