设un=(-1)n ln(1+1/√n),则级数【 】
A、un 和un2 都收敛
B、un 和un2 都发散
C、un 收敛而un2 发散
D、un 发散而un2 收敛
设un=(-1)n ln(1+1/√n),则级数【 】
A、un 和un2 都收敛
B、un 和un2 都发散
C、un 收敛而un2 发散
D、un 发散而un2 收敛
C
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(x)=0是F(x)在x=0处可导的【 】
设函数f(x)在[0,1]上f'' (x)>0,则f' (0),f' (1),f(1)-f(0)或f(0)-f(1)的大小顺序是【 】
设有直线l:及平面π:4x-2y+z-2=0,则直线l【 】
设X和Y为两个随机变量,且P{X≥0,Y≥0}=3/7,P{X≥0}=P{Y≥0}=4/7,则P{max(X,Y)≥0}=________.
设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X2的数学期望E(X2)=________.
设3阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=____________.
幂级数n/(2n+(-3)n) x2n-1的收敛半径R=________.
设n为正整数,y=yn (x)是微分方程xy' - (n+1)y=0满足条件yn(1)=1/n(n+1)的解.(1) 求yn (x);(2) 求级数yn(x)的收敛域及和函数.
求级数xn/(ln(n!))的收敛半径,并讨论收敛区间端点的收敛情况.
如函数f(x)在[0,+∞)上一致连续,且无穷积分f(x)dx收敛,证明:f(x)=0.
设f(x)在[0,+∞)上非负连续,n是正整数,若f(x)dx存在,则f(x)dx收敛.
设cn(x)在[0,1]上非负连续(n=1,2,…),cn(x)在[0,1]上一致收敛,令Mn=cn(x),问Mn 是否收敛?用(xn(1-x))/lnn验证上面的结论.
求幂级数(3+(-1)n)n/n xn的收敛半径,并判断它在收敛区间端点的收敛情况.
证明:(1)级数 sin(2nπx)/2n 在区间(-∞,+∞)上连续;(2)函数f(x)=sin(2nπx)/2n 在任何区间上不能逐次求导.