设常数k>0,则级数(-1)n(k+n)/n2 【 】
A、发散
B、绝对收敛
C、条件收敛
D、敛散性与k的取值有关
已知三维向量空间的基底为α1=(1,1,0)T,α2=(1,0,1)T,α3=(0,1,1)T,则向量β=(2,0,0)T在此基底下的坐标是____________.
设L为取正向的圆周x2+y2=9,则曲线积分∮L(2xy-2y)dx+(x2 - 4x)dy=________.
与两直线及(x+1)/1=(y+2)/2=(z-1)/1都平行且过原点的平面方程为______________.
由曲线y=lnx与两条直线y=e+1-x及y=0所围成的平面图形的面积是______.
设有一根具有绝热的侧表面的均匀细杆,它的初始温度为φ(x),在一端有热流密度q1进入,另一端与温度为θ(t)的介质有热交换。写出定解问题。
若un>0,n=1,2,…且∀n,un+1/un <1则un 收敛.
已知a1=2,an+1=1/2 (an+1/an ),证明:(1)数列{an }收敛;(2) (an/an+1 -1) 收敛.
设a1=2,an+1=1/2(an+1/an )(n=1,2,…),证明:(1) an 存在;(2)级数(an/an+1 -1)收敛.
试问:级数(1+1/2+⋯+1/n)/(n(n+2))是否收敛?若收敛,试求它的和.
设级数sinnx/(1+nx2)(1)当x取何值时,级数绝对收敛?并说明理由;(2)当x取何值时,级数条件收敛?并说明理由.
已知an<bn (n=1,2,⋯), 若级数an ,与bn 均收敛,则“an 绝对收敛”是“bn 绝对收敛的”【 】