叙述Egoroff定理.
分析{(x,y)|x²+y²<1}上的实系统其中的所有奇点,并确定其类型,画出奇点附近的大致图,并与之对应的一次近似系统作比较.
给定x0>0以及[0,+∞)上连续函数f(x),证明:至多具有一个定义于[0,+∞)上的连续函数y(x)满足对任意的x>0,有dy/dx=-y³+f(x),其中y(0)=y0.
设[a,+∞)上非负连续函数f可导,且具有连续导函数,若存在r>1,使xf'(x)/f(x)≤-r,证明:反常积分f(x)dx收敛.
设f在[0,1]上连续,在(0,1)上有二阶连续导数,f(0)=f(1)=1,f'' (x)<8,证明:对任意的x∈[0,1],有f(x)>0.
确定常数a,b,使得极限(axcosx-bsinx)/x³ 存在,并求极限.
设S是单位球面x²+y²+z²=1被锥z>所截部分曲面,定向取球外侧为正向,则对于F=(xy+cosz)i+(-xy-x² )j+(x+2z²)k,曲面积分∬SFdS=________.
设x,t>0,则含参变量积分I(t)=(e-x -e-xt)/x dx=________.
在Oxy平面上给定点O(0,0),A(1,0),动点P(x,y)在直线y=x+1上,则当P(x,y)=________时,∠OPA取到最大.
解答如下问题:(1)证明:(-1)n n(n+1)/(n(n+1) x2+2n)关于x∈(-∞,+∞)一致收敛.(2)计算(-1)n n(n+1)/(n(n+1) x2+2n ).
设un(x) = e-nx + xn+1 (n=1,2,…),求级数un(x)的收敛域和函数.
设n为正整数,y=yn (x)是微分方程xy' - (n+1)y=0满足条件yn(1)=1/n(n+1)的解.(1) 求yn (x);(2) 求级数yn(x)的收敛域及和函数.
求级数xn/(ln(n!))的收敛半径,并讨论收敛区间端点的收敛情况.
如函数f(x)在[0,+∞)上一致连续,且无穷积分f(x)dx收敛,证明:f(x)=0.
设f(x)在[0,+∞)上非负连续,n是正整数,若f(x)dx存在,则f(x)dx收敛.
设cn(x)在[0,1]上非负连续(n=1,2,…),cn(x)在[0,1]上一致收敛,令Mn=cn(x),问Mn 是否收敛?用(xn(1-x))/lnn验证上面的结论.
将函数f(x)=2+|x|(-1≤x≤1)展开成以2为周期的傅里叶级数,并由此求级数1/n2 的和.
设f(x)=,则其以2π为周期的傅里叶级数在点x=π处收敛于__________.
设函数f(x)=πx+x2 (-π<x<π)的傅里叶级数展开式为a0/2+(ancosnx+bnsinnx),其中系数b3的值为__________.
设常数λ>0,且级数an2 收敛,则级数(-1)n |an |/【 】
设f(x)在x=0的某一领域内具有二阶连续导数,且f(x)/x=0,证明级数f(1/n)绝对收敛.
幂级数n/(2n+(-3)n) x2n-1的收敛半径R=________.
设an>0(n=1,2,⋯),且an 收敛,常数λ∈(0,π/2),则级数(-1)n (ntan λ/n) a2n【 】