设f(x)在[0,+∞)上非负连续,n是正整数,若f(x)dx存在,则f(x)dx收敛.
若un>0,n=1,2,…且∀n,un+1/un <1则un 收敛.
若f(x,y)在区域D内对x和y都是连续的,则f(x,y)对(x,y)D为二元连续.
定义函数f(x)在[a,b]可积时,必须选假定f(x)在[a,b]上有界.
若f(x),g(x)在[a,b]上可导,∀x∈[a,b],f' (x)≤g'(x),则∀x∈[a,b],f(x)≤g(x).
若f(x)在x0的领域内有定义,在x0可导,则f(x)在x0的某领域内连续.
设f(x)在(a,b)上一致连续,则f(x)在(a,b)上有界.
对∀p为正整数,|un+p - un |=0,则un 存在.
已知f(x,y)在(x0,y0)的某邻域内,fx(x,y)连续,fy(x0,y0)存在,证明:f(x,y)在(x0,y0)可微.
级数n!/nn e-n-x的收敛域为(a,+∞),则a=________.
求证:(-1)n-1x2/(1+x2 )n 在R上一致收敛.
设函数项级数ne-nx ,x∈(0,+∞).(1)证明此级数在(0,+∞)上收敛但不一致收敛;(2)求此级数的和函数;(3)给出数项级数n/e3n 的和.
已知含参变量积分F(x)=sin(xy)/(ln(lny)) dy,证明:(1) F(x)在[δ,+∞)上关于x一致收敛(δ>0)(2) F(x)在(0,+∞)上关于x不一致收敛.
已知{un(x)}是可微函数列,且un(x)在[a,b]上一致有界,证明:若un(x)收敛,则un(x)必定一致收敛.
解答如下问题:(1)证明:(-1)n n(n+1)/(n(n+1) x2+2n)关于x∈(-∞,+∞)一致收敛.(2)计算(-1)n n(n+1)/(n(n+1) x2+2n ).
设a1,a2,⋯,an是n个实数,都落在区间(-1,1)里.(1)证明 ∏1≤i,j≤n(1+aiaj)/(1-aiaj )≥1(2)找出以上不等式中等号成立的充分必要条件.
函数f(z)=1/(z-1)(z-2)在圆环区域:(1) 0<|z|<1;(2) 1<|z|<2;(3) 2<|z|<+∞;内是处处解析的。试把f(z)在这些区域内展成洛朗级数。
已知f(x)=,将f(x)展开成正弦级数,并求该级数的和函数.
设f(x)为周期为2的周期函数,且f(x)=1-x,x∈[0,1],若f(x)=a0/2+ancosnπx,则a2n =________.
设un(x) = e-nx + xn+1 (n=1,2,…),求级数un(x)的收敛域和函数.
设n为正整数,y=yn (x)是微分方程xy' - (n+1)y=0满足条件yn(1)=1/n(n+1)的解.(1) 求yn (x);(2) 求级数yn(x)的收敛域及和函数.