已知{un(x)}是可微函数列,且un(x)在[a,b]上一致有界,证明:若un(x)收敛,则un(x)必定一致收敛.
已知含参变量积分F(x)=sin(xy)/(ln(lny)) dy,证明:(1) F(x)在[δ,+∞)上关于x一致收敛(δ>0)(2) F(x)在(0,+∞)上关于x不一致收敛.
已知f(x)在[a,b]上三次可微,且f(a)=f' (a)=f(b)=0,|f''' (x)|≤M,证明:|f(x) dx|≤M/72 (b-a)4.
已知S={(x,y,z)│x2+4y2+9z2=1,z≤0}取下侧,求∬S(yez+x)dydz+(zex+y)dzdx+(xcosxy+z)dxdy
已知V是三个坐标平面以及x+y+2z=1,x+y+2z=2围成的封闭区域,求∭V1/(x+y+2z)2 dV
已知an=(|sint|+|cost|)dt,bn=e-t sintdt,求anbn.
求证:(-1)n-1x2/(1+x2 )n 在R上一致收敛.
设函数项级数ne-nx ,x∈(0,+∞).(1)证明此级数在(0,+∞)上收敛但不一致收敛;(2)求此级数的和函数;(3)给出数项级数n/e3n 的和.
设un(x) = e-nx + xn+1 (n=1,2,…),求级数un(x)的收敛域和函数.
设n为正整数,y=yn (x)是微分方程xy' - (n+1)y=0满足条件yn(1)=1/n(n+1)的解.(1) 求yn (x);(2) 求级数yn(x)的收敛域及和函数.
求级数xn/(ln(n!))的收敛半径,并讨论收敛区间端点的收敛情况.
如函数f(x)在[0,+∞)上一致连续,且无穷积分f(x)dx收敛,证明:f(x)=0.
设f(x)在[0,+∞)上非负连续,n是正整数,若f(x)dx存在,则f(x)dx收敛.
设cn(x)在[0,1]上非负连续(n=1,2,…),cn(x)在[0,1]上一致收敛,令Mn=cn(x),问Mn 是否收敛?用(xn(1-x))/lnn验证上面的结论.
幂级数n/(2n+(-3)n) x2n-1的收敛半径R=________.
设an>0(n=1,2,⋯),且an 收敛,常数λ∈(0,π/2),则级数(-1)n (ntan λ/n) a2n【 】
设幂级数anxn 的收敛半径为3,则幂级数nan (x-1)n+1的收敛区间为________.
设a1=2,an+1=1/2(an+1/an )(n=1,2,…),证明:(1) an 存在;(2)级数(an/an+1 -1)收敛.
设正向数列{an}单调减少,且(-1)nan 发散,试问级数(1/(an+1))n 是否收敛?并说明理由.
求幂级数((-4)n+1)/(4n (2n+1)) x2n 的收敛域及和函数S(x).
已知a1=2,an+1=1/2 (an+1/an ),证明:(1)数列{an }收敛;(2) (an/an+1 -1) 收敛.
已知幂级数(-1)nn(n+1) xn .(1)求幂级数的收敛半径、收敛区间以及和函数;(2)计算(-1)nn(n+1)/4n .