设位于点(0,1)的质点A对质点M的引力大小为k/r2 (k>0,为常数,r为质点A与M之间的距离),质点M沿曲线y=自B(2,0)运动到O(0,0),求在此运动过程中质点A对质点M的引力所做的功.
设位于点(0,1)的质点A对质点M的引力大小为k/r2 (k>0,为常数,r为质点A与M之间的距离),质点M沿曲线y=自B(2,0)运动到O(0,0),求在此运动过程中质点A对质点M的引力所做的功.
设M(x,y),根据题设,有={0-x,1-y}={-x,1-y},r=| |=,则引力f可表示为f=k/r2 ∙| |/r=k/r3 {-x,1-y}(方向与一致),于是W= k/r3 [-xdx+...
查看完整答案设函数y=y(x)满足微分方程y''-3y'+2y=2ex,其图形在点(0,1)处的切线与曲线y=x2-x+1在该点处的切线重合,求函数y=y(x).
设u=yf(x/y)+xg(y/x),其中函数f,g具有二阶连续导数,求x ∂2u/∂x2+y ∂2u/∂x∂y .
设∑为曲面x2+y2+z2=1的外侧,计算曲面积分I=∬∑ x3dydz+y3dzdx+z3dxdy.
设f(x)=,f[φ(x)]=1-x,且φ(x)≥0,求φ(x)及其定义域.
n维向量组α1,α2,…,αs (3≤s≤n)线性无关的充要条件是【 】
设幂级数an(x-1)n在x=-1处收敛,则此级数在x=2处【 】
设空间区域Ω1:x2+y2+z2≤R2,z≥0,Ω2:x2+y2+z2≤R2,x≥0,y≥0,z≥0,则【 】
设y=f(x)是方程y''-2y'+4y=0的一个解,且f(x0)>0,f' (x0)=0,则函数f(x)在点x0处【 】
设f(t)=t(1+1/x)2tx ,则f' (t)=__________.
设f(x)是周期为2的周期函数,它在区间(-1,1]上定义为f(x)=,则f(x)的傅里叶级数在x=1处收敛于______.
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f''(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:|f'(c)|≤2a+b/2.
设α1=,α2=,α3=,则三条直线a1 x+b1 y+c1=0,a2 x+b2 y+c2=0,a3 x+b3 y+c3=0,(其中ai2+bi2≠0,i=1,2,3)相交于一点的充要条件是【 】
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
已知函数y=y(x)在任意点x处的增量Δy=yΔx/(1+x2)+α,且当Δx→0时,α是∆x(∆x→0)的高阶无穷小,y(0)=π,则y(1)等于【 】