计算题(2003年重庆大学

求由圆柱面x2+y2=a2,x2+z2=a2 (a>0)所围立体的体积.

答案解析

暂无答案

讨论

设实变量的复值函数u(x,t)满足Cauchy初值问题iut+uxx=0,-∞<x<+∞,t>0,其中i=√(-1),u(x,0)=f(x)为已知函数且满足|f(x)|2 dx=1.(1)求证对任意的t>0,有|u(x,t)|2 dx≡1.(2)求证此问题在L2空间中的解是唯一的.(3)求谐波解u=aei(kx-ωt)(其中,a,k,ω均与自变量x,t无关且k为实数)的色散关系,讨论谐波是否耗散,是否色散,求出谐波的相速度和群速度(以k表达).(4)用Fourier变换法求出解的积分表达式.

为清除井底的污泥,用缆绳将抓斗放入井底抓起污泥后提出井口(见图). 已知井深30m,抓斗自重 400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s 的速率从抓斗缝隙中漏掉,现将抓起污泥的抓斗提升至井口,问克服重力需做多少焦耳的功?(说明:①1Nx1m=1J;其中m,N,s,J分别表示米,牛顿,秒,焦耳.②抓斗的高度及位于井口上方的缆绳长度忽略不计.)

由曲线y=sin3/2⁡x (0≤x≤π)与x轴围成的平面绕x轴旋转而的旋转体的体积为【 】

曲线y=cosx(-π/2≤x≤π/2)与x轴所围成的图形,绕x轴旋转一周所成的旋转体的体积为【 】

设抛物线y=ax2+bx+c过原点,当0≤x≤1时,y≥0.又已知抛物线与x轴及直线x=1所围成图形的面积为1/3,试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.

过点P(1,0)作抛物线y=的切线,该切线与抛物线及x轴围成一个平面图形.求此平面图形绕x轴旋转一周所成旋转体的体积.

求心形线r=a(1+cosθ)的全长,其中a>0是常数.

设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且f'(x)>-2f(x)/x,证明(1)中的x0是唯一的.

设函数f(x)在(-∞,+∞)上有二阶连续导数,证明:f'' (x)≥0的充要条件是:对任意不同的实数a,b,f((a+b)/2)≤1/(b-a)f(x)dx.

求曲线L:y=1/3 x3+2x(0≤x≤1)绕直线y=4/3 x旋转一周生成的旋转曲面的面积.