问答题(1977年莫斯科电气学院)

点A位于半径为a的圆周内部,且离圆心的距离为b(0≤b<a),从点A向圆周上所有点的切线作垂线,求所有垂足所围成的图形的面积.

答案解析

设圆周方程为x2+y2=a2,点A位于(b,0),在圆周上任取点P(x0,y0),过点P作圆的切线L,则L的方程为x0 x+y0 y=a2,这里(x,y)为L上点的流动坐标.过点A作L的垂线AQ,则AQ的参数方程为x=b+x0 t,y=y0 t将其代入L的方程,解得垂足Q所对应的参数为:t=1-b/a2 x0,于是垂足Q的坐标(x,y)为x=b+x0 (1-b/a2 x0 ),y=y0 (1-b/a2 x0 )令x0=acost,y0=asint,代入上式得垂足Q的坐标(x,y)为x=b+(1-b/a co...

查看完整答案

讨论

为清除井底的污泥,用缆绳将抓斗放入井底抓起污泥后提出井口(见图). 已知井深30m,抓斗自重 400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s 的速率从抓斗缝隙中漏掉,现将抓起污泥的抓斗提升至井口,问克服重力需做多少焦耳的功?(说明:①1Nx1m=1J;其中m,N,s,J分别表示米,牛顿,秒,焦耳.②抓斗的高度及位于井口上方的缆绳长度忽略不计.)

设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且f'(x)>-2f(x)/x,证明(1)中的x0是唯一的.

设函数f(x)在(-∞,+∞)上有二阶连续导数,证明:f'' (x)≥0的充要条件是:对任意不同的实数a,b,f((a+b)/2)≤1/(b-a)f(x)dx.

(1)证明初值问题与y(x)=y0+f[t,y(t)]dt等价;(2)若对上式中的积分用辛普生公式,试导出相应的计算格式;并针对初值问题给出计算格式。

从原点向抛物线y=x2+x+1引两条切线,求此二切线与抛物线围成的面积。

试求由曲线y=ex下方,经过坐标原点作y=ex的切线的左侧以及x轴上方构成的图形面积。

设实变量的复值函数u(x,t)满足Cauchy初值问题iut+uxx=0,-∞<x<+∞,t>0,其中i=√(-1),u(x,0)=f(x)为已知函数且满足|f(x)|2 dx=1.(1)求证对任意的t>0,有|u(x,t)|2 dx≡1.(2)求证此问题在L2空间中的解是唯一的.(3)求谐波解u=aei(kx-ωt)(其中,a,k,ω均与自变量x,t无关且k为实数)的色散关系,讨论谐波是否耗散,是否色散,求出谐波的相速度和群速度(以k表达).(4)用Fourier变换法求出解的积分表达式.

求由圆柱面x2+y2=a2,x2+z2=a2 (a>0)所围立体的体积.

(1)设y=φ(x)(x≥0)是严格增加的连续函数,φ(0)=0,x=ψ(y)是它的反函数,证明:φ(x) dx+ψ(y)dy≥ab,(a,b≥0),并给出上述不等式的几何意义(要求图示).(2)用上述不等式证明:ab≤ap/p+bq/q,a,b>0,p>1,1/p+1/q=1.

求由曲面(x2/a2 +y2/b2 +z2/c2 )2=x2/a2 +y2/b2 (a,b,c>0)所围成的空间区域的体积.