已知命题:若函数f(x)在区间[a,b]上可导,f'(a)>0,则存在c∈(a,b),使得f(x)在区间[a,c)上单调增加,判断该命题是否成立.若判断成立,给出证明;若判断不成立,举一反例,证明命题不成立.
已知命题:若函数f(x)在区间[a,b]上可导,f'(a)>0,则存在c∈(a,b),使得f(x)在区间[a,c)上单调增加,判断该命题是否成立.若判断成立,给出证明;若判断不成立,举一反例,证明命题不成立.
命题不成立.反例:f(x)=;因为f+'(0)=(f(x)-f(0))/x=(1/2+xsin 1/x)=1/2+0=1/2>0,当0<x≤1时,f'(x)=1/2+2xsin 1/x-cos 1/x,所以f(x)在[0,1]上可导.下面用反证法证明命题不成立.若存在c∈(0,1)...
查看完整答案设α1,…,αn和β1,…,βn是线性空间V的两组基,V上的线性变换A把每个αi映成βi,i=1,…,n.证明:A在α1,…,αn下的矩阵和在β1,…,βn下的矩阵相等.
设复系数多项式f(x)在x=1处的导数f'(1)≠0.证明:存在n阶复方阵A使得f(A)=f(1)J,其中J=是n阶Jordan块.
设A,B都是n阶复方阵,C=A+B,则det(C-AB)=det(C-BA).
设A是n阶复方阵,V1是A的行向量生成的Cn的子空间,V2是A的列向量生成的Cn的子空间,则V1=V2.
设A是2022阶可逆对称实方阵,则A必有2021阶非零主子式
设函数f(x)在(0,+∞)上连续可导,f(x)存在,f(x)的图形在(0,+∞)是上凸的,求证:f′(x)=0.
不查表,求方程x2sin=2x-1977的近似解,精确到0.001.
设函数f(x)=ax-blnx(a>0)有两个零点,则b/a的取值范围是【 】
设x0,x1,…,xn为n+1个互异的插值节点,li (x)(i=0,1,…,n)为拉格朗日基本插值多项式(也称为插值基本函数)。证明:(1) li (x)≡1;(2) li (x)xik≡xk.
某企业生产某种商品,年产x件时总成本为c(x)=c+dx,年需求量是价格p的线性函数为a-bp(其中a,b,c,d均为常数),试求:(1)利润最大时的产量及最大利润;(2)需求对价格的弹性。
设f(x)=nx(1-x)n(n为自然数),求(1) f(x)在[0,1]上的最大值M(n)={f(x)}.(2)求M(n).