证明题(2022年中国科学技术大学

任意置换方阵可复相似于对角阵。

答案解析

暂无答案

讨论

设3阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A.

已知ξ=是矩阵A=的一个特征向量.(1)试确定参数a,b及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.

设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值____________.

设n阶矩阵A的元素全为1,则A的n个特征值是__________.

设A为3阶矩阵,A=,则A的特征值为1,-1,0的充分必要条件是【 】

已知α1=,α2=,α3=,记β1=α1,β2=α2 - kβ1,β3=α3 - l1 β1 - l2 β2,若β1,β2,β3 两两正交,则l1,l2依次为【 】

令n为正整数。对任一正整数k,记0k=为k×k的零矩阵。令Y=为一个(2n+1)×(2n+1)矩阵,其中A=(xi,j)1≤i≤n,1≤j≤n+1是一个n×(n+1)实矩阵且At记A的转置矩阵,即(n+1)×n的矩阵,(j,i)处元素为xi,j.(i)证明题(10分)称复数λ为k×k矩阵X的一个特征值,如果存在非零列向量v=(x1,…,xk)t使得Xv=λv.证明:0是Y的特征值且Y的其他特征值形如±,其中非负实数λ是AAt的特征值。(ii)证明题(15分)令n=3且a1,a2,a3,a4是4个互不相等的正实数。记a=以及xi,j=ai δi,j+aj δ4,j-1/a2 (ai2+a42)aj(1≤i≤3,1≤j≤4),其中δi,j= .证明:Y有7个互不相等的特征值。

A=,则A的特征值为【 】

A为4阶方阵,其特征值为-1,1,2,3,A*为A的伴随矩阵,则|A*|=__________。

设A为数域P上的一个n级矩阵,如果f(A)=0,则称f(x)以A为根。次数最低首项为1的以A为根的多项式称为A的最小多项式,证明矩阵A的最小多项式是惟一的。