问答题(1997年理工数学Ⅰ

已知ξ=是矩阵A=的一个特征向量.

(1)试确定参数a,b及特征向量ξ所对应的特征值;

(2)问A能否相似于对角阵?说明理由.

答案解析

(1)由题设,有Aξ=λ0ξ,即=λ0,也即,解得a=-3,b=0,λ0=-1.(2)由A=,知|λE-A|==(λ+1)3,可见λ=-1为A的三重根,但r(-E-A)=2,从而λ=-1对应的线性无关...

查看完整答案

讨论

设σ为n维线性空间V的一个线性变换,σ2=σ,证明:(1)σ特征值为0,1;(2)设V0,V1分别为0,1对应的特征子空间,则V=V0⊕V1;(3)若σ只有0特征值,则σ为零变换.

令n为正整数。对任一正整数k,记0k=为k×k的零矩阵。令Y=为一个(2n+1)×(2n+1)矩阵,其中A=(xi,j)1≤i≤n,1≤j≤n+1是一个n×(n+1)实矩阵且At记A的转置矩阵,即(n+1)×n的矩阵,(j,i)处元素为xi,j.(i)证明题(10分)称复数λ为k×k矩阵X的一个特征值,如果存在非零列向量v=(x1,…,xk)t使得Xv=λv.证明:0是Y的特征值且Y的其他特征值形如±,其中非负实数λ是AAt的特征值。(ii)证明题(15分)令n=3且a1,a2,a3,a4是4个互不相等的正实数。记a=以及xi,j=ai δi,j+aj δ4,j-1/a2 (ai2+a42)aj(1≤i≤3,1≤j≤4),其中δi,j= .证明:Y有7个互不相等的特征值。

A=,则A的特征值为【 】

A为4阶方阵,其特征值为-1,1,2,3,A*为A的伴随矩阵,则|A*|=__________。

设A为数域P上的一个n级矩阵,如果f(A)=0,则称f(x)以A为根。次数最低首项为1的以A为根的多项式称为A的最小多项式,证明矩阵A的最小多项式是惟一的。

设A,B是n×n矩阵,φ(λ)为A的特征多项式,证明φ(B)是奇异矩阵的充要条件是A,B有公共的特征值。

设A为n×n复矩阵,证明:存在一个n维向量α,使α,Aα,…,An-1α线性无关的充要条件是A的每个特征向量值恰有一个线性无关的特征向量。

三阶方阵A的特征值为1,-1,2,则A2+4A-1的特征值=________.

设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为ξ1=,ξ2=,ξ3=,又向量β=.(1)将β用ξ1,ξ2,ξ3线性表出;(2)求An β(n为自然数).

设3阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A.