设A,B是n×n矩阵,φ(λ)为A的特征多项式,证明φ(B)是奇异矩阵的充要条件是A,B有公共的特征值。
设A为实对称矩阵。证明当实数t充分大之后,tI+A是正定矩阵,其中I表示单位矩阵。
考虑循环矩阵A=证明:(1) A=a0 In+a1 T+a2 T2+⋯+an-1 Tn-1,其中T=In表示n×n单位矩阵。(2) T相似于对角矩阵。(3) A相似于对角矩阵。
设x1-x2=a1,x2-x3=a2,x3-x4=a3,x4-x5=a4,x5-x1=a5。证明此方程组有解的充分必要条件为ai =0。
证明方程dx/dt=Ax(A为n×n实矩阵)有以ω(ω≠0)为周期的周期解的充要条件是系数矩阵A至少有一个形如i 2πμ/ω的特征根,其中μ为整数。
设y=φ(x)满足微分不等式dy/dx+a(x)y≤0 其中函数a(x)在x≥0上连续,证明:φ(x)≤φ(0) ,(x≥0).
证明微分方程初值问题:的解在α<t<β上存在且惟一,其中a(t),b(t)均在区间α<t<β上连续,α<x_0<β,x_0为任意实数。
给定方程x''+8x'+7x=f(t),其中f(t)在(-∞,+∞)上连续。如果f(t)=0,则上述方程的每一个解当t→+∞时都趋于零。
A为4阶方阵,其特征值为-1,1,2,3,A*为A的伴随矩阵,则|A*|=__________。
设A为数域P上的一个n级矩阵,如果f(A)=0,则称f(x)以A为根。次数最低首项为1的以A为根的多项式称为A的最小多项式,证明矩阵A的最小多项式是惟一的。
设矩阵A满足:对任意x1,x2,x3均有A=(1)求A.(2)求可逆矩阵P与对角矩阵A,使得P-1AP=Λ.
设3阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A.
已知ξ=是矩阵A=的一个特征向量.(1)试确定参数a,b及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值____________.
设A为3阶矩阵,A=,则A的特征值为1,-1,0的充分必要条件是【 】
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为ξ1=,ξ2=,ξ3=,又向量β=.(1)将β用ξ1,ξ2,ξ3线性表出;(2)求An β(n为自然数).
已知α1=,α2=,α3=,记β1=α1,β2=α2 - kβ1,β3=α3 - l1 β1 - l2 β2,若β1,β2,β3 两两正交,则l1,l2依次为【 】
设n阶矩阵A的元素全为1,则A的n个特征值是__________.
设σ为n维线性空间V的一个线性变换,σ2=σ,证明:(1)σ特征值为0,1;(2)设V0,V1分别为0,1对应的特征子空间,则V=V0⊕V1;(3)若σ只有0特征值,则σ为零变换.
假设λ为n阶可逆矩阵A的一个特征值,证明:(1) 1/λ为A-1的特征值;(2) |A|/λ为A的伴随矩阵A*的特征值.
设A为n×n复矩阵,证明:存在一个n维向量α,使α,Aα,…,An-1α线性无关的充要条件是A的每个特征向量值恰有一个线性无关的特征向量。