证明题(2003年北京大学

给定方程x''+8x'+7x=f(t),其中f(t)在(-∞,+∞)上连续。如果f(t)=0,则上述方程的每一个解当t→+∞时都趋于零。

答案解析

暂无答案

讨论

考虑线性方程组dx/dt=A(t)x+f(t) (1)其中A(t),f(t)以ω为周期,A(t)为n×n的矩阵函数,f(t)为n维向量函数。设x1 (t),x2 (t),…,xn (t)是对应齐次方程组dx/dt=A(t)x (2)的基本解组,满足初始条件:x1 (0)=,x2 (0)=,…,xn (0)= 证明:1.设x=φ(t)是(1)的解,则x=φ(t)是(1)的以ω为周期的周期解的充要条件是φ(0)=φ(ω)。2.对于任何连续的周期函数f(t),f(t)=f(t+ω),方程组(1)有惟一的周期解(周期为ω)的充要条件是矩阵X(ω)=[x1 (ω)…xn (ω)]没有等于1的特征根。

北京大学齐次微分方程

证明:任一可逆的实矩阵A可以表示成A=QB,其中Q为正交矩阵,B是主对角线上元素均为正的三角形矩阵:B=,bii>0,且此表示式是惟一的。

设A=(aij)n×n,且行列式≠0,1≤k≤n.证明存在下三角形矩阵Bn×n,使BA为上三角形矩阵。

设A为m×n且秩为s的矩阵,X为p×m的列满秩矩阵,即r(X)=m,而Y为n×q的行满秩矩阵,即r(Y)=n。证明:r(A)=r(XA)=r(AY)=r(XAY)其中符号r(T)表示矩阵T的秩。

设A为数域P上的一个n级矩阵,如果f(A)=0,则称f(x)以A为根。次数最低首项为1的以A为根的多项式称为A的最小多项式,证明矩阵A的最小多项式是惟一的。

设S1,S3为实对称矩阵,S2为实矩阵,则矩阵S=为正定矩阵的充要条件为矩阵S3与矩阵S1-S2 S3-1 S2'皆为正定矩阵。

设A是n级实对称矩阵,证明rank(A)=n的充要条件是:存在实对称矩阵B使AB+B'A是正定矩阵。

设矩阵T=,T以及D可逆,证明(A-BD-1 C)-1存在,并求T-1,其中A,B,C,D为适当维度的矩阵。

三个人以相同的概率被分配到4个不同房间中任一间,则前三个房间各有一个人的概率为【 】

设f(x)具有二阶连续导数,f(0)=0,f'(0)=1,且[xy(x+y)-f(x)y]dx+[f'(x)+x2y]dy=0为一阶全微分方程,求f(x)及此全微分方程的通解.

求微分方程y''+4y'+4y=eax的通解,其中a为实数.

在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为 N,在 t= 0 时刻已掌握新技术的人数为x0,在任意时刻t 已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人收和未掌握新技术人数之积成正比,比例常数k>0,求x(t).

已知函数y=y(x)在任意点x处的增量Δy=yΔx/(1+x2)+α,且当Δx→0时,α是∆x(∆x→0)的高阶无穷小,y(0)=π,则y(1)等于【 】

从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为k(k>0).试建立y与v所满足的微分方程,并求出函数关系式 y= y(v).

设函数y(x)(x≥0)二阶可导,且y' (x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒为1,求此曲线y=y(x)的方程.

微分方程y'''-2y''+5y'=0的通解y(x)=__________.

设函数y=f(x)是微分方程2xy'-4y=2lnx-1满足条件y(1)=1/4的解,求曲线y=y(x)(1≤x≤e)的弧长.

若微分方程y''+ay'+by=0的解在(-∞,+∞)上有界,则【 】

欧拉方程x2y″ + xy' - 4y = 0满足条件y(1) = 1,y'(1) = 2得解为y = ______.