问答题(2021年5月阿里巴巴

对于R上的连续且绝对可积的复数值函数f(x),定义R上的函数(Sf)(x):

(Sf)(x)=e2πiux f(u)du.

(i)问答题(10分) 求S(1/(1+x2))和S(1/(1+x2)2 )的显示表达式。

(ii)问答题(15分)对任意整数k,记fk(x)=(1+x2)-1-k.假设k≥1,找到常数c1,c2使得函数y=(Sfk)(x)满足二阶常微分方程

xy''+c1y'+c2xy=0.

答案解析

记V为R上的复数值、连续、绝对可积的函数组成的线性空间.Lemma 0.1(i)若f(x)∈V,f'(x)∈V且f(x)=0,则(Sf')(x)=-2πix(Sf)(x). (1)(ii) 若f(x)∈V,xf(x)∈V,则(Sf)'=2πiS(xf(x)). (2)引理0.1的证明.(i)(Sf')(x)=e2πiuxf'(u)du=e2πiuxf(u) - (e2πiux)' f(u)du=-2πixe2πiuxf(u)du=-2πix(Sf)(x)(ii)对任意的a,b∈R(a<b),2πiS(xf(x))dx=2πi(e2πiuxuf(u)du)dx=(2πiue2πiuxf(u)dx)du=e2πibuf(u)du - e2πiauf(u)du=(Sf)(b)-(Sf)(a).这样,(Sf)'=2πiS(xf(x)).引理0.1有如下推论.Corollary 0.2 (i)假设f,f',Sf,x(Sf)(x)∈V且f(x)=0.若(S(Sf))(x)=f(-x),则(S(Sf' ))(x)=f'(-x).(ii)假设f(x),xf(x),Sf,(Sf)'∈V且⁡(Sf)(x)=0.若(S(Sf))(x)=f(-x),则S(S(xf(x)))=-xf(-x).Lemma 0.3 (i) S((1+x2)-1)=πe-2π|x|.(ii)S(πe-2π|x| )=(1+x2)-1.Proof. (i)记f(x)=(1+x2)-1.对于x≥0,我们有(Sf)(x)=e2πiux/(1+u2)du.记CA≔{z=u+iv:-A≤u≤A,v=0}∪{z=Aeiθ:0≤θ≤π}.注意到当A>1时,i是1/(1+z2 )在CA界定的有界区域内的唯一极点.由回路积分的方法并令A→∞,我们得到(Sf)(x)=πe-2πx.由于f(x)是偶函数,所以(Sf)(x)也是偶函数.这样,(Sf)(x)=πe-2π|x|.(ii)记g(x)=πe-2π|x|.直接计算得(Sg)(x)=e2πixuπ...

查看完整答案

讨论

设函数y(x)(x≥0)二阶可导,且y' (x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒为1,求此曲线y=y(x)的方程.

微分方程y''' - y = 0的通解y=_____________________.

考虑方程x''+k2 x=f(t),其中k为常数,函数f(t)于0≤t<+∞上连续。(1)当k≠0时求上述方程满足初始条件x(0)=1,x' (0)=-1的解。(2)证明当k=0时上述方程的通解可表示为x=c1+c2 t+(t-s)f(s)ds 其中c1,c2为任意常数。

给定方程x''+8x'+7x=f(t),其中f(t)在(-∞,+∞)上连续。如果f(t)=0,则上述方程的每一个解当t→+∞时都趋于零。

蚂蚁森林是全球最大的个人碳账户平台,该平台以量化方式记录每个人的低碳行为。当支付宝用户收集到足够的“能量”时,他/她可以向蚂蚁森林申请种植一棵真正的树。截至2019年4月22日(世界地球曰),支付宝蚂蚁森林的5亿用户已经在中国西北地区种植了1亿棵真树,总面积为11.2万公顷,保护着总面积为1.2万公顷的保护地。1.本题两小问中考虑在一个3×4的长方形区域的每个小方格的中心点种树,要求在横、竖、斜3个方向上都不能存在连续的3颗(及以上)树。令1表示可以种树,0表示不可以种树。满足种树条件的示意图为不满足种树条件的示意图为(a)请问在一个3×4的区域里,最多能种多少颗树,并给出一种种植的方式。(b) 在满足上一问最多能种多少颗树答案的前提下,请问一共有多少种种法,给出思路和答案。2. 考虑一个由从左到右的n个小方格组成的1×n的区域,从左向右依次在每个小方格种一棵树,一共种n棵。树的种类只有两种:胡杨和樟子松。假设在第一个小方格种植的树是胡杨的概率是r。后续种树的规则为:如果前一个小方格种的是胡杨,则本格种胡杨的概率为s;如果前一个小方格种的是樟子松,则本格种樟子松的概率为t,0<r,s,t<1。(a)假设r=1/3,s+t≠1。是否存在s和t,使得对任意的i,2≤i≤n,在第i个小方格种植的树是胡杨的概率都等于一个跟i无关的常数?如果存在,请给出s和t的关系;如果不存在,请说明理由。(b) 假设r=1/3,s=3/4,t=4/5。假设我们观察到第2019个小方格里种植的树是胡杨,但我们观察不到在其它小方格里种植的是哪种树。请问在第一个小方格里种植的树是胡杨的概率是多少?3.为了种树的可持续发展控制成本,蚂蚁森林希望在知道用户申请数量之前从公益机构获得种植配额。令随机变量D1和D2分别表示支付宝用户对胡杨和樟子松的申请数量。将Di的分布函数记为Fi,其均值和方差分别表示为μi和σi2(i=1,2)。假设蚂蚁森林只知道μi和σi2 (i=1,2)但并不知道F的其它信息。蚂蚁森林需要确定两种树的配额,分别记为Qi (i=1,2)。由于环境的承受能力,种植的树木总数不能超过给定的常数M,即Q1+Q2≤M并且假设M≥μ1+μ2。已知两种树的订购成本分别为cQi (i=1,2)。如果预留配额Qi小于种树申请数量Di,即Qi≤Di,则增加额外成本m[Di-Qi ]+ (i=1,2)。这里[x]+≜max⁡{x,0}.m,c,μi,σi为已知常数且满足关系(m-c)/c>(σ1/μ1 )2>(σ2/μ2 )2.蚂蚁森林希望选择种树配额Qi≥0(i=1,2)使得在最坏情况下总成本的期望极小,其中最坏情况是针对所有可能的均值为μi、方差为σi2的分布函数Fi。从数学上讲,目标是求解以下优化问题:,(1)subject to Q1+Q2≤M,Q1,Q2≥0其中Fi是所有均值为μi、方差为σi2 (i=1,2)的累积分布函数的集合,其支撑集为非负数。问题:请求解问题(1),推导最优种树配额Qi,i=1,2的显式表达式。

2019年第一届阿里巴巴数学竞赛的优胜者们在参加集训营的时候,集体送给主办方负责人的礼物,是一个有60个全等的三角形面的多面体。从图中我们可以看到,这个多面体的表面是60个全等的空间四边形拼接而成的。 一个空间n边形是指由一个平面n边形沿若干条对角线做适当翻折(即在选定的对角线处形成适当的二面角)后得到的空间图形。两个空间图形全等指的是它们可以通过R3中的一个等距变换完全重合。一个多面体指的是一个空间有界区域,其边界可以由有限多个平面多边形沿公共边拼接而成。1. 判断题(4分) 我们知道2021=43×47.那么是否存在一个多面体,它的表面可以由43个全等的空间47边形拼接而成?2. 问答题(6分) 请对你的判断给出逻辑的解释。

面条是中华传统美食,花样不断翻新。清晨,擀宽面的张师傅别出心裁,把他的宽面条两头粘上,变成了宽面圈儿,如图:他平时切面条一样,把宽面圈儿沿着中心线切开,就得到两个完全同样的宽面圈儿,如图:张师傅灵机一动,重新将面条拧了一下,再两头粘上。这样竟然成了数学中常常讲到的莫比乌斯带(以德国数学家奥古斯特●莫比乌斯命名),如图:接着,他灵机两动,三动,直至n动。将宽面拧了两个,三下,直至n下,总以如图的右手内旋的方式来拧,然后照样地两头粘上。这些宽面圈儿在数学上还没有固定的名称。张师傅把莫比乌斯带称作1旋圈面,拧两下、三下的称作2旋、3旋圈面,总之,拧n下就是旋圈面;n为2、3、7的情形如图:起先没有拧就粘上的,普普通通,只称作平凡圈面,或者0旋圈面。在线师傅看来,不同旋数的圈面是彼此不同的(因为只在厨房里摆放来,摆放去,总不能把一种变成另一种)。张师傅把他的多旋圈面开店上架,一时网红。有人为百岁老人订制100旋圈面,有人为公司年会订制2019旋圈面,(张师傅拧得手都酸了)。试问:张师傅要是依旧沿中心线切开这两种圈面,分别会得到什么?【 】

在一个虚拟的世界中,每个居民(设想为没有大小的几何点)依次编号为1,2,⋯.为了抗击某种疫情,这些居民要接种某疫苗,并在注射后在现场留观一段时间。现在假设留观的场所是平面上的一个半径为1/4的圆周。为了安全,要求第m号居民和第n居民之间的距离dm,n满足(m+n)dm,n≥1这里我们考虑的是圆周上的距离,也就是两点间劣弧的弧长。那么1.选择题(4分)下列选项( )符合实际情况。A 这个留观室最多能容纳8个居民B 这个留观室能容纳的居民个数有大于8的上限:C 这个留观室可以容纳任意多个居民。2.证明题(6分)证明你的论断。

去年,张师傅因为多旋圈面爆红,今年他来到了达摩院给扫地僧做面。某天,软件工程师小李跟张师傅吐槽工作。小李主要硏究和设计算法用于调节各种产品的参数。这样的参数一般可以通过极小化Rn上的某个损失函数f求得。在小李最近的一个项目中,这个损失函数是另外一个课题组提供的;出于安全考虑和技术原因,该课题组难以向小李给出此函数的内部细节,而只能提供一个接口用于计算任意x∈Rn处的函数值f(x)。所以,小李必须仅基于函数值来极小化f。而且,每次计算f的值都消耗不小的计算资源。好在该问题的维度n不是很高(10左右)。另外,提供函数的同事还告知小李不妨先假设f是光滑的。这个问题让张师傅想起了自己收藏的一台古董收音机。要在这台收音机上收听一个节目,你需要小心地来回拧一个调频旋钮,同时注意收音效果,直到达到最佳。在这过程中,没有人确切地知道旋钮的角度和收音效果之间的定量关系是什么。张师傅和小李意识到,极小化f不过就是调节一台有多个旋钮的机器:想象x的每一个分量由一个旋钮控制,而f(x)表示这台机器的某种性能,只要我们来回调整每个旋钮,同时监视f的值,应该就有希望找到最佳的x。受此启发,两人一起提出了极小化f的一个迭代算法,并命名为“自动前后调整算法”( Automated Forward/Backward Tuning,AFBT,算法1)。在第k次迭代中,AFBT通过前后调整xk的单个分量得2n个点{xk±tk ei:i=1,…,n},其中tk为步长;然后,令yk为这些点中函数值最小的一个,并检査yk是否使f充分减小;若是,取xk+1=yk,并将步长增倍;否则,令xk+1=xk并将步长减半。在算法1中,ei表示Rn中的第i个坐标向量,它的第i个分量为1,其余皆为0; I(∙) 为指示函数——若f(xk )-f(yk)至少为tk之平方,则I[f(xk )-f(yk )≥tk2]取值为1,否则为0。1自动前后调整算法(AFBT)输入x0∈Rn,t0>0。对k=0,1,2,…,执行以下循环。1:yk≔argmin{f(y):y=xk±tk ei,i=1,…,n} #计算损失函数。2:sk≔I[f(xk )-f(yk )≥tk2] #是否充分下降?是:sk=1;否:sk=0。3:xk+1≔(1-sk ) xk+sk yk #更新迭代点。4:tk+1≔2(2sk-1 ) tk #更新步长。sk=1:步长增倍;sk=0:步长减半。现在,我们对损失函数f:Rn→R作出如下假设。假设1. f为凸函数,即对任何x,y∈Rn与α∈[0,1]都有f((1-α)x+αy)≤(1-α)f(x)+αf(y).假设2. f在Rn上可微且∇f在Rn上 L-Lipschitz连续。假设3. f的水平集有界,即对任意λ∈R,集合{x∈Rn:f(x)≤λ}皆有界。基于假设1与假设2,可以证明〈∇f(x),y-x〉≤f(y)-f(x)≤〈∇f(x),y-x〉+L/2 ‖x-y‖2对任何x,y∈Rn成立;假设1与假设3则保证f在Rn上取到有限的最小值f*。凸函数的更多性质可参考任何一本凸分析教科书。证明题(20分) 在假设1-3下,对于AFBT,证明f(xk)=f*.

设h(z)是关于自然变量z的多项式.考虑系数在多项式环C[z]中的关于y的三次方程y3-3zy+h(z)=0.(i)当h(z)=-z3-1时,找到此方程的至少一个一次多项式函数解.(ii)假设方程y3-3zy+h(z)=0有三个互不相等的整函数解y=f1(z),f2(z),f3(z),则h(z)可以取哪些多项式?注:整函数指在整个复平面上解析的函数.

设u∈C2 (R3)且∆u(x)=((∂2 u)/(∂x12 )+(∂2 u)/(∂x22 )+(∂2 u)/(∂x32 ))(x)=λu(x),λ为正常数,已知存在C>0,使得|x|≥C时,u≡0,求证:u(x)≡0,∀x∈R3.

计算∫Lxdy-ydx,其中L:x2+y2=1,取逆时针方向.

令n为正整数。对任一正整数k,记0k=为k×k的零矩阵。令Y=为一个(2n+1)×(2n+1)矩阵,其中A=(xi,j)1≤i≤n,1≤j≤n+1是一个n×(n+1)实矩阵且At记A的转置矩阵,即(n+1)×n的矩阵,(j,i)处元素为xi,j.(i)证明题(10分)称复数λ为k×k矩阵X的一个特征值,如果存在非零列向量v=(x1,…,xk)t使得Xv=λv.证明:0是Y的特征值且Y的其他特征值形如±,其中非负实数λ是AAt的特征值。(ii)证明题(15分)令n=3且a1,a2,a3,a4是4个互不相等的正实数。记a=以及xi,j=ai δi,j+aj δ4,j-1/a2 (ai2+a42)aj(1≤i≤3,1≤j≤4),其中δi,j= .证明:Y有7个互不相等的特征值。

设A=(aij)n×n是一个由±1组成的n×n方阵(n>1).将A的n个行向量记为v1,…,vn.对于两个行行向量v=(ai)1≤i≤n与v'=(bi)1≤i≤n,定义v*v'=(aibi)1≤i≤n以及v∙v'=aibi假设:(1)对任意的i,j(1≤i,j≤n),存在k(1≤k≤n)使得vi*vj=vk;(2)对任意的i,j(1≤i,j≤n,i≠j), vi∙vj=0.证明:(i) A有一个行向量;对于A的另外任意一个行向量v_i,它有n/2个分量为1,n/2个分量为-1.(ii)n是2的幂.(ii)设n=2m,则可以通过重新排列A的行与列,将A变为方阵这里,X⨂m==是方阵X的m次张量积:两个方阵X=(xij)1≤i,j≤p与Y=(yi'j')1≤i',j'≤q的张量积被定义为一个pq×pq方阵X⨂Y=(zkl)1≤kl≤pq其中zkl=xijyi'j',整数i,j,i',j'满足1≤i,j≤p,1≤i',j'<q,且由等式k=p(i'-1)+i与l=p(j'-1)+j唯一确定.

当某公司推出一个新的社交软件时,公司的市场部门除了会关心该软件的活跃客的总人数随时间的变化,也会对客户群体的一些特征做具体的调研和分析。我们用n(t,x)表示客户的数量密度(以下简称密度),这里t表示时间,而x表示客户对该社交软件的使用时长,那么在t时刻,对于0<x1<x2,使用时长介于x1和x2之间的客户数量为n(t,x)dx。我们假设,密度n(t,x)随着时间演化受以下几个因素的影响:假设1.当客户持续使用该社交软件时,他的使用时长随时间线性增长。假设2.客户在使用过程中,可能会停止使用,我们假设停止速率d(x)>0只跟使用时长x有关。假设3.新客户的来源有两个。①公司的宣传:单位时间内因此增加的人数是时间的函数,用c(t)表示。②老客户的宣传:老客户会主动向自己的同事、朋友等推荐使用该社交软件,推荐成功的速率跟客户的使用时长x有关,记作b(x)。假设如果在某一时刻,记为t=0时,密度函数是已知的,n(0,x)=n0 (x)。可以推导出,n(t,x)的时间演化满足如下的方程 (1)这里N(t)可解读为新客户的增加速率。我们假设b,d∈(0,∞),即b(x)和d(x)正且(本质)有界。以下,我们先做一个简化假设:c(t)≡0,即新客户的增加只跟老客户的宣传有关。(i)问答题(10分)根据假设1和假设2,形式地推导出(1)中n(t,x)所满足的偏微分方程,需要在推导过程中指出模型假设和数学表达式之间的对应关系。再根据假设3,解释(1)中N(t)的定义的含义。(ii)问答题(10分)我们想要研究新客户的增加速率N(t)和推荐成功速率b(x)之间的关系。为此,请推导出一个N(t)所满足的方程,且方程中只包含N(t),n0 (x),b(x),d(x),而不包含n(t,x)。并证明,N(t)满足如下估计|N(t)|≤‖b‖∞|n0 (x)|dx,这里‖∙‖∞表示L∞范数。(iii)证明题(10分)最后,我们想要研究,在充分长的时间之后,数量密度函数n(t,x)有什么渐近的趋势。由于客户总人数可能一直在增加,所以我们不方便直接研究数量密度函数n(t,x),而更应该去看一个重整化的密度函数。为此,我们首先假设如下的特征值问题有唯一解(λ0,φ(x)):并且它的对偶问题也有唯一的解ψ(x):然后,我们定义重整化密度n ̃(t,x)≔n(t,x)e-λ0 t。证明,对于任意凸函数H:R+→R+满足H(0)=0,我们有d/dt ψ(x)φ(x)H()dx≤0,∀t≥0,并证明ψ(x)n(t,x))dx=eλ0t ψ(x) n0 (x)dx.

对于R上的连续且绝对可积的复数值函数f(x),定义R上的函数(Sf)(x):(Sf)(x)=e2πiux f(u)du.(i)问答题(10分) 求S(1/(1+x2))和S(1/(1+x2)2 )的显示表达式。(ii)问答题(15分)对任意整数k,记fk(x)=(1+x2)-1-k.假设k≥1,找到常数c1,c2使得函数y=(Sfk)(x)满足二阶常微分方程xy''+c1y'+c2xy=0.

对于R上的连续且绝对可积的复数值函数f(x),定义R上的函数(Sf)(x):(Sf)(x)=e2πiux f(u)du.(i)问答题(10分) 求S(1/(1+x2))和S(1/(1+x2)2 )的显示表达式。(ii)问答题(15分)对任意整数k,记fk(x)=(1+x2)-1-k.假设k≥1,找到常数c1,c2使得函数y=(Sfk)(x)满足二阶常微分方程xy''+c1y'+c2xy=0.

对于R上的连续且绝对可积的复数值函数f(x),定义R上的函数(Sf)(x):(Sf)(x)=e2πiux f(u)du.(i)问答题(10分) 求S(1/(1+x2))和S(1/(1+x2)2 )的显示表达式。(ii)问答题(15分)对任意整数k,记fk(x)=(1+x2)-1-k.假设k≥1,找到常数c1,c2使得函数y=(Sfk)(x)满足二阶常微分方程xy''+c1y'+c2xy=0.

对于R上的连续且绝对可积的复数值函数f(x),定义R上的函数(Sf)(x):(Sf)(x)=e2πiux f(u)du.(i)问答题(10分) 求S(1/(1+x2))和S(1/(1+x2)2 )的显示表达式。(ii)问答题(15分)对任意整数k,记fk(x)=(1+x2)-1-k.假设k≥1,找到常数c1,c2使得函数y=(Sfk)(x)满足二阶常微分方程xy''+c1y'+c2xy=0.

对于R上的连续且绝对可积的复数值函数f(x),定义R上的函数(Sf)(x):(Sf)(x)=e2πiux f(u)du.(i)问答题(10分) 求S(1/(1+x2))和S(1/(1+x2)2 )的显示表达式。(ii)问答题(15分)对任意整数k,记fk(x)=(1+x2)-1-k.假设k≥1,找到常数c1,c2使得函数y=(Sfk)(x)满足二阶常微分方程xy''+c1y'+c2xy=0.