问答题(1997年理工数学Ⅰ

在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为 N,在 t= 0 时刻已掌握新技术的人数为x0,在任意时刻t 已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人收和未掌握新技术人数之积成正比,比例常数k>0,求x(t).

答案解析

由已知,有dx/dt=kx(N-x),x(0)=x0.对方程分离变量得dx/(x(N-x))=kdt,两边积分得x=NCekNt/(1+CekNt ),代入初始条件x(0)=x0,得x=Nx0ekNt...

查看完整答案

讨论

设函数y=y(x)的微分方程xy' - 6y = -6,满足y()=10,(1) 求y(x);(2) P为曲线y=y(x)上的一点,曲线y=y(x)在点P的法线在y轴上的截距为Iy,为使Iy最小,求P的坐标.

对于R上的连续且绝对可积的复数值函数f(x),定义R上的函数(Sf)(x):(Sf)(x)=e2πiux f(u)du.(i)问答题(10分) 求S(1/(1+x2))和S(1/(1+x2)2 )的显示表达式。(ii)问答题(15分)对任意整数k,记fk(x)=(1+x2)-1-k.假设k≥1,找到常数c1,c2使得函数y=(Sfk)(x)满足二阶常微分方程xy''+c1y'+c2xy=0.

电子科技大学高阶线性微分方程

北京大学齐次微分方程

考虑线性方程组dx/dt=A(t)x+f(t) (1)其中A(t),f(t)以ω为周期,A(t)为n×n的矩阵函数,f(t)为n维向量函数。设x1 (t),x2 (t),…,xn (t)是对应齐次方程组dx/dt=A(t)x (2)的基本解组,满足初始条件:x1 (0)=,x2 (0)=,…,xn (0)= 证明:1.设x=φ(t)是(1)的解,则x=φ(t)是(1)的以ω为周期的周期解的充要条件是φ(0)=φ(ω)。2.对于任何连续的周期函数f(t),f(t)=f(t+ω),方程组(1)有惟一的周期解(周期为ω)的充要条件是矩阵X(ω)=[x1 (ω)…xn (ω)]没有等于1的特征根。

给定方程x''+8x'+7x=f(t),其中f(t)在(-∞,+∞)上连续。如果f(t)=0,则上述方程的每一个解当t→+∞时都趋于零。

考虑方程x''+k2 x=f(t),其中k为常数,函数f(t)于0≤t<+∞上连续。(1)当k≠0时求上述方程满足初始条件x(0)=1,x' (0)=-1的解。(2)证明当k=0时上述方程的通解可表示为x=c1+c2 t+(t-s)f(s)ds 其中c1,c2为任意常数。

设y=φ(x)满足微分不等式dy/dx+a(x)y≤0 其中函数a(x)在x≥0上连续,证明:φ(x)≤φ(0) ,(x≥0).

北京大学齐次微分方程

证明方程dx/dt=Ax(A为n×n实矩阵)有以ω(ω≠0)为周期的周期解的充要条件是系数矩阵A至少有一个形如i 2πμ/ω的特征根,其中μ为整数。