袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第2个人取行得黄球的概率是________.
对数螺线ρ=eθ在点(ρ,θ)=(eπ/2,π/2)处的切线的直角坐标方程为__________.
设幂级数anxn 的收敛半径为3,则幂级数nan (x-1)n+1的收敛区间为________.
(3sinx+x2cos(1/x))/((1+cosx)ln(1+x))=________.
求微分方程y''+4y'+4y=eax的通解,其中a为实数.
过点P(1,0)作抛物线y=的切线,该切线与抛物线及x轴围成一个平面图形.求此平面图形绕x轴旋转一周所成旋转体的体积.
设f(x)=lnt/(1+t) dt,其中x>0,求f(x)+f(1/x).
在椭圆x2/a2 +y2/b2 =1的第一象限上求一点P,使该点处的切线、椭圆及两坐标轴所围成图形面积为最小(其中a>0,b>0).
进行一系列独立复生试验,每次成功概率为P,则在成功2次前失败3次的概率为__________。
设A,B为两事件,且P(A)=1/2,P(B)=1/3,P(A│B)=1/6,则P(A ̅│B ̅ )=【 】
甲袋中有2个红球3个白球,乙袋中也有2个红球3个白球,现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取2个球。求最后取出的2个球全是白球的概率。
一个盒子中有4个球,分别标有号码0、1、1、2。现从该盒子中有返回地抽取2个球,设X为两个球上号码的乘积,求:X的分布律。
三个人以相同的概率被分配到4个不同房间中任一间,则前三个房间各有一个人的概率为【 】
设随机事件A,B及其和事件A∪B的概率分别是0.4,0.3,0.6,若B ̅表示B的对立事件,那么积事件AB ̅的概率P(AB ̅ )=________.
随机地向半圆0<y<(a为常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积与正比,则原点和该点的连续与x轴的夹角小于π/4的概率为__________.
已知P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/6,则事件A,B,C全不发生的概率为__________.
若在区间(0,1)内任取两个数,则事件“两数之和小于6/5”的概率为______.
设在一次试验中,事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________;而事件A至多发生一次的概率为__________.
一批产品共有10个正品和2个次品,任意抽取两次,每次抽1个,抽出后不再放回,则第二次抽出的是次品的概率为__________.
已知f(x)在x=0的某个领域内连续,且f(0)=0,f(x)/(1-cosx)=2,则在点x=0处f(x)【 】
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)必是【 】
已知两条直线的方程是 l1:(x-1)/1=(y-2)/0=(z-3)/(-1);l2:(x+2)/2=(y-1)/1=z/1.则过l1且平行于l2的平面方程是____________.