问答题(2023年理工数学Ⅰ

已知二次型f(x1,x2,x3 )=x12+2x22+2x32+2x1 x2-2x1 x3,g(y1,y2,y3 )=y12+y22+y32+2y2 y3.

(Ⅰ)求可逆变换x=Py,将f(x1,x2,x3)化为g(y1,y2,y3);

(Ⅱ)是否存在正交变换x=Qy,将f(x1,x2,x3)化为g(y1,y2,y3).

答案解析

(Ⅰ)利用配方法将f(x1,x2,x3 ),g(y1,y2,y3 )化为规范型,从而建立两者间的关系.先将f(x1,x2,x3 )化为规范型:f(x1,x2,x3 )=x12+2x22+2x32+2x1 x2-2x1 x3=(x1+x2-x3 )2+x22+x32+2x2 x3=(x1+x2-x3 )2+(x2+x3 )2令,则f(x1,x2,x3 )=z12+z22.即=,使得f(x1,x2,x3 )=z12+z22.再将g(y1,y2,y3 )化为规范型:g(y1,y2,y3 )=y12+y22+y32+2y2 y3=y12+...

查看完整答案

讨论