求函数f(x,y)=(y-x²)(y-x³)的极值.
求函数f(x,y)=(y-x²)(y-x³)的极值.
根据题意,,得驻点为(0,0),(1,1),(2/3,10/27).fxx''=-(2y+3xy-5x3 )-x(3y-15x2 ),fxy''=-x(2+3x),fyy''=2.代入(0,0),,则AC-B2=0,故充分条件失效,当x→0时,取y=x2+kx3 (k>0),f(x,y)=(y-x2 )(y-x3 )=kx3 [x2+(k-1) x3 ]=kx5+o(x5),则f(x,y)/x5 =(kx5+o(x5))/x5 =k...
查看完整答案