已知z=f(u,v),其中u=2x+y,v=x2,求∂z/∂x,∂z/∂y,∂2/∂x2,∂2z/∂x∂y.
已知z=f(u,v),其中u=2x+y,v=x2,求∂z/∂x,∂z/∂y,∂2/∂x2,∂2z/∂x∂y.
∂z/∂x=2fu+2xfv∂z/∂y=fu∂2z/∂x2=∂/∂x (2fu+2xfv )=2fuu∙2+2fuv∙2x+2fv+2xfvu∙2+2xfvv∙2x=4fuu+4xfuv+2fv+4x...
查看完整答案设z=1/x·f(xy)+yf(x+y),求∂2z)/∂x∂y.
若f(x,y)的偏导数fx,fy在(x0,y0)存在,则f(x,y)在(x0,y0)连续.
用变换ξ=x,η=x2+y2化简方程y ∂z/∂x-x ∂z/∂y=0,并求出这个方程的通解z=z(x,y).
二元函数f(x,y)在点(x0,y0)处两个偏导数fx' (x0,y0 ),fy' (x0,y0)存在是f(x,y)在该点连续的【 】
设变换可把方程6 ∂2z/∂x2 +∂2z/∂x∂y-∂2z/∂x∂y=0化简为∂2z/∂u∂v=0,求常数a,其中z=z(x,y)有二阶连续的偏导数.
设f(u)可导,z=xyf(y/x),若x ∂z/∂x+y ∂z/∂y=xy(lny-lnx),则【 】
设φ(t),ψ(t)有二阶连续导数,u=φ(y/x)+xψ(y/x),求:x2 ∂2u/∂x2+2xy ∂2u)/∂x∂y+y2 ∂2u/∂y2.
设u=yf(x/y)+xg(y/x),其中函数f,g具有二阶连续导数,求x ∂2u/∂x2+y ∂2u/∂x∂y .
已知曲面z=4-x2-y2上点P处的切平面平行于平面2x+2y+z-1=0,则点P的坐标是【 】
设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续的二阶偏导数,求∂2z/∂x∂y.
设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求∂2z/∂x∂y.
设n是曲面2x2+3y2+z2=6在点P(1,1,1)处的指向外侧的法向量,求函数u=/z在点P处沿方向n的方向导数.
函数u=ln(x2+y2+z2)在点M(1,2,-2)处的梯度 gradu|M=__________.
在曲线x=t,y=-t2,z=t3的所有切线中,与平面x+2y+z=4平行的切线是【 】
设z=f(ex siny,x2+y2),其中f具有二阶连续偏导数,求∂2z/∂x∂y.