用变换ξ=x,η=x2+y2化简方程y ∂z/∂x-x ∂z/∂y=0,并求出这个方程的通解z=z(x,y).
设z=1/x·f(xy)+yf(x+y),求∂2z)/∂x∂y.
若f(x,y)的偏导数fx,fy在(x0,y0)存在,则f(x,y)在(x0,y0)连续.
已知:z=x2 F(y/x2),其中F(u)的一阶偏导数存在,证明:x ∂z/∂x+2y ∂z/∂y=2z.
设f(u)可导,z=xyf(y/x),若x ∂z/∂x+y ∂z/∂y=xy(lny-lnx),则【 】
设函数f(t)连续,令F(x,y)=(x-y-t) f(t)dt,则【 】
已知z=f(u,v),其中u=2x+y,v=x2,求∂z/∂x,∂z/∂y,∂2/∂x2,∂2z/∂x∂y.
已知二元函数f(x,y)=.(1)求fx(0,y);(2)证明:fxy(0,0)=-1.
设u=e-xsin(x/y),则∂2u)/∂x∂y在点(2,1/π)处的值为________.
设变换可把方程6 ∂2z/∂x2 +∂2z/∂x∂y-∂2z/∂x∂y=0化简为∂2z/∂u∂v=0,求常数a,其中z=z(x,y)有二阶连续的偏导数.
设x(y),z(y)是由方程组所确定的隐函数,求x'(y),z'(y).
函数u=ln(x+)在A(1,0,1)处沿A点指向B(3,-2,2)点方向的方向导数为________.
设直线l:在平面π上,且平面π与曲面z=x2+y2相切于点(1,-2,5),求a,b的值.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dz/dx.
设u=u(x,y),v=v(x,y)由方程所确定,求∂u/∂x,∂v/∂x.
分析{(x,y)|x²+y²<1}上的实系统其中的所有奇点,并确定其类型,画出奇点附近的大致图,并与之对应的一次近似系统作比较.
证明微分方程初值问题:的解在α<t<β上存在且惟一,其中a(t),b(t)均在区间α<t<β上连续,α<x_0<β,x_0为任意实数。
若f(x):(0,π)→R连续,f(x)>0,f(π/2)=1,且对于任意的x∈(0,π)满足dt/(f2(t))=-cosx/(f(x)),求f(x)的表达式.
若微分方程y''+ay'+by=0的解在(-∞,+∞)上有界,则【 】
已知函数y=y(x)在任意点x处的增量Δy=yΔx/(1+x2)+α,且当Δx→0时,α是∆x(∆x→0)的高阶无穷小,y(0)=π,则y(1)等于【 】
求微分方程x2y'+xy=y2满足初始条件y|x=1=1的特解.
已知同维数的两个向量组有相同的秩,且其中之一可用另外一个线性表示,证明:这两个向量组等价。
设A=是实数域上的矩阵,证明:(1)如果|aii|>∑j≠i|aij|,i=1,2,…,n则|A|≠0;(2)如果aii>∑j≠i|aij|,i=1,2,…,n则|A|>0.