设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dz/dx.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dz/dx.
分别在z=xf(x+y)和F(x,y,z)=0的两边对x求导,得
,整理后得,
解得dz/dx=((f+xf') Fy'-xf'Fz')/(Fy'+xf'Fz' ),其中Fy'+xf'Fz'≠0.
已知((x+ay)dx+ydy)/(x+y)2 为某函数的全微分,则a等于【 】
若f(x,y)在区域D内对x和y都是连续的,则f(x,y)对(x,y)D为二元连续.
求函数f(x,y)=1/2(xn+yn)(n是正整数)在条件x+y=a(x≥0,y≥0,常数a>0)下的极值.
设参数方程x=f'(t),y=tf'(t)-f(t),其中函数f(t)可以求导足够次数,求一阶导数dy/dx和二阶导数d2y/dx2.
设f,g为连续可微函数,u=f(x,xy),v=g(x+xy),求∂u/∂x∙∂v/∂x
设u=yf(x/y)+xg(y/x),其中函数f,g具有二阶连续导数,求x ∂2u/∂x2+y ∂2u/∂x∂y .
已知曲面z=4-x2-y2上点P处的切平面平行于平面2x+2y+z-1=0,则点P的坐标是【 】
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ/∂z≠0,求du/dx.
设x(y),z(y)是由方程组所确定的隐函数,求x'(y),z'(y).
设u=u(x,y),v=v(x,y)由方程所确定,求∂u/∂x,∂v/∂x.
在区间(0,2)上随机取一点,将该区间分成两段,较短的一段长度记为X,较长的一段记为Y,令Z=Y/X.(1) 求X的概率密度;(2) 求Z的概率密度;(3) 求E(X/Y).
已知连续随机变量X的概率密度函数为f(x)=,则X的数学期望为______;X的方差为______.
设随机变量X服从均值为10,均方差为0.02的正态分布,已知Φ(x)=du, Φ(2.5)=0.9938,则X落在区间(9.95,10.05)内的概率为______.
设随机变量X的概率密度函数为fX(x)=1/(π(1+x2)),求随机变量Y=1-∛X的概率密度函数fY(y).