已知z3-xyz=a3,求zxx,zyx.
已知z3-xyz=a3,求zxx,zyx.
(1)方程两端同时对x求偏导,有:3z2 zx-yz-xyzx=0 ①解得:zx=yz/(3z2-xy)① 式两端再对x求偏导,有:6z∙zx2+3z2∙zxx-yzx-xyzxx=0 解得:zxx=(2yzx-6zzx2)/(3z2-xy)=(-2y3 xz)/(3z2-xy)3 .(2)方程两端同时对y求偏导,有...
查看完整答案计算(e-ax - e-bx)/x sinxdx,其中a,b>0.
设f(x,y)=,问:f(x,y)在(0,0)处连续吗?方向可导吗?可微吗?
已知an=+∞,证明(a1+a2+⋯+an)/n=+∞,并举例说明反过来不成立.
已知函数f(x)在[a,+∞)上连续,且f(x)存在,证明:(1)函数f(x)有界;(2)存在ξ∈[a,+∞),使得f(ξ)为f(x)在[a,+∞)上的最大值或最小值.
已知函数f(x)在(0,1)上连续,且f(1)=3ex-1f(x)dx,证明:存在ξ∈(0,1),使得f(ξ)+f'(ξ)=0.
已知二元函数f(x,y)=.(1)求fx(0,y);(2)证明:fxy(0,0)=-1.
已知幂级数(-1)nn(n+1) xn .(1)求幂级数的收敛半径、收敛区间以及和函数;(2)计算(-1)nn(n+1)/4n .
已知a1=2,an+1=1/2 (an+1/an ),证明:(1)数列{an }收敛;(2) (an/an+1 -1) 收敛.
已知((x+ay)dx+ydy)/(x+y)2 为某函数的全微分,则a等于【 】
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程∂2z/∂x2+∂2z/∂y2=e2x z,求f(u).
设z=1/x f(xy)+yφ(x+y),f,φ具有二阶连续导数,则∂2z/∂x∂y=________________.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dz/dx.
已知z=f(u,v),其中u=2x+y,v=x2,求∂z/∂x,∂z/∂y,∂2/∂x2,∂2z/∂x∂y.
已知:z=x2 F(y/x2),其中F(u)的一阶偏导数存在,证明:x ∂z/∂x+2y ∂z/∂y=2z.
设函数f(x,y)可微,且f(x+1,ex)=x(x+1)2 , f(x,x2)=2x2lnx,则df(1,1)=【 】
已知f(x,y)在(x0,y0)的某邻域内,fx(x,y)连续,fy(x0,y0)存在,证明:f(x,y)在(x0,y0)可微.
设x(y),z(y)是由方程组所确定的隐函数,求x'(y),z'(y).
设参数方程x=f'(t),y=tf'(t)-f(t),其中函数f(t)可以求导足够次数,求一阶导数dy/dx和二阶导数d2y/dx2.
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ/∂z≠0,求du/dx.
设u=u(x,y),v=v(x,y)由方程所确定,求∂u/∂x,∂v/∂x.
计算 ∬∑x3dydz,其中∑: x2/a2 +y2/b2 +z2/c2 =1,z≥0,取外侧.
设f(x)在(0,1)可微,且有x2 f(x) dx=0,证明:存在θ∈(0,1),使得f' (θ)=-f(θ)/θ.