设z=1/x f(xy)+yφ(x+y),f,φ具有二阶连续导数,则∂2z/∂x∂y=________________.
设z=1/x f(xy)+yφ(x+y),f,φ具有二阶连续导数,则∂2z/∂x∂y=________________.
yf''(xy)+φ'(x+y)+yφ''(x+y)
设总体X的概率密度为f(x)=,其中θ>-1是未知参数.X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.
从学校乘汽车到火车站的途中有3个交通岗,假设在各交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.(1)证明B可逆;(2)求AB-1.
已知ξ=是矩阵A=的一个特征向量.(1)试确定参数a,b及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
设a1=2,an+1=1/2(an+1/an )(n=1,2,…),证明:(1) an 存在;(2)级数(an/an+1 -1)收敛.
设f(x)连续,φ(x)=f(xt)dt,且f(x)/x=A(A为常数),求φ'(x)并讨论φ'(x)在x=0处的连续性.
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程∂2z/∂x2+∂2z/∂y2=e2x z,求f(u).
设n是曲面2x2+3y2+z2=6在点P(1,1,1)处的指向外侧的法向量,求函数u=/z在点P处沿方向n的方向导数.
函数u=ln(x2+y2+z2)在点M(1,2,-2)处的梯度 gradu|M=__________.
在曲线x=t,y=-t2,z=t3的所有切线中,与平面x+2y+z=4平行的切线是【 】
设z=f(ex siny,x2+y2),其中f具有二阶连续偏导数,求∂2z/∂x∂y.
由曲线绕y轴旋转一周得到的旋转柱面在点(0,√3,√2)处的指向外侧的单位法向量为__________.
曲面z-ez+2xy=3在点(1,2,0)处的切平面方程为____________.
函数u=ln(x+)在A(1,0,1)处沿A点指向B(3,-2,2)点方向的方向导数为________.
设函数f(x,y)可微,且f(x+1,ex)=x(x+1)2 , f(x,x2)=2x2lnx,则df(1,1)=【 】
已知f(x,y)在(x0,y0)的某邻域内,fx(x,y)连续,fy(x0,y0)存在,证明:f(x,y)在(x0,y0)可微.
设f,g为连续可微函数,u=f(x,xy),v=g(x+xy),求∂u/∂x∙∂v/∂x
设u=yf(x/y)+xg(y/x),其中函数f,g具有二阶连续导数,求x ∂2u/∂x2+y ∂2u/∂x∂y .
设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续的二阶偏导数,求∂2z/∂x∂y.
设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求∂2z/∂x∂y.
n维向量组α1,α2,…,αs (3≤s≤n)线性无关的充要条件是【 】
设函数y=y(x)满足微分方程y''-3y'+2y=2ex,其图形在点(0,1)处的切线与曲线y=x2-x+1在该点处的切线重合,求函数y=y(x).
若在区间(0,1)内任取两个数,则事件“两数之和小于6/5”的概率为______.
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y''+p(x) y'+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是【 】