函数u=ln(x2+y2+z2)在点M(1,2,-2)处的梯度 gradu|M=__________.
设函数y=y(x)由方程ex+y+cos(xy)=0确定,则dy/dx=__________.
设二维随机变量(X,Y)的概率密度为f(x,y)=,求随机变量Z=X+2Y的分布函数.
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
设A是n阶正定矩阵,E是n阶单位矩阵,证明A+E的行列式大于1.
设函数f(x)在[0,1]上连续,在(0,1)内可导,且3f(x)dx=f(0),证明:在(0,1)内存在一点c,使f'(c)=0.
将函数f(x)=2+|x|(-1≤x≤1)展开成以2为周期的傅里叶级数,并由此求级数1/n2 的和.
设参数方程x=f'(t),y=tf'(t)-f(t),其中函数f(t)可以求导足够次数,求一阶导数dy/dx和二阶导数d2y/dx2.
设f,g为连续可微函数,u=f(x,xy),v=g(x+xy),求∂u/∂x∙∂v/∂x
设u=yf(x/y)+xg(y/x),其中函数f,g具有二阶连续导数,求x ∂2u/∂x2+y ∂2u/∂x∂y .
设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续的二阶偏导数,求∂2z/∂x∂y.
设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求∂2z/∂x∂y.
设函数f(x,y)可微,且f(x+1,ex)=x(x+1)2 , f(x,x2)=2x2lnx,则df(1,1)=【 】
已知f(x,y)在(x0,y0)的某邻域内,fx(x,y)连续,fy(x0,y0)存在,证明:f(x,y)在(x0,y0)可微.