问答题(1987年理工数学Ⅱ

求微分方程y''+2y'+y=xex的通解(一般解).

答案解析

齐次方程的特征方程为λ2+2λ+1=0,特征根为λ=-1(二重).齐次方程的通解为y=(C1+C2 x) e-x.设非齐次方程的特解为y*=(a_0+a_a x) e^x,代入方程得a_0=-1/4,...

查看完整答案

讨论

北京大学齐次微分方程

设f(x)=sinx-(x-t)f(t)dt,其中f为连续函数,求f(x).

若连续函数f(x)满足关系式f(x)=f(t/2)dt+ln2,则f(x)等于【 】

欧拉方程x2y″ + xy' - 4y = 0满足条件y(1) = 1,y'(1) = 2得解为y = ______.

差分方程△yt = t的通解为____________________.

对于R上的连续且绝对可积的复数值函数f(x),定义R上的函数(Sf)(x):(Sf)(x)=e2πiux f(u)du.(i)问答题(10分) 求S(1/(1+x2))和S(1/(1+x2)2 )的显示表达式。(ii)问答题(15分)对任意整数k,记fk(x)=(1+x2)-1-k.假设k≥1,找到常数c1,c2使得函数y=(Sfk)(x)满足二阶常微分方程xy''+c1y'+c2xy=0.

若f(x):(0,π)→R连续,f(x)>0,f(π/2)=1,且对于任意的x∈(0,π)满足dt/(f2(t))=-cosx/(f(x)),求f(x)的表达式.

北京大学齐次微分方程

考虑线性方程组dx/dt=A(t)x+f(t) (1)其中A(t),f(t)以ω为周期,A(t)为n×n的矩阵函数,f(t)为n维向量函数。设x1 (t),x2 (t),…,xn (t)是对应齐次方程组dx/dt=A(t)x (2)的基本解组,满足初始条件:x1 (0)=,x2 (0)=,…,xn (0)= 证明:1.设x=φ(t)是(1)的解,则x=φ(t)是(1)的以ω为周期的周期解的充要条件是φ(0)=φ(ω)。2.对于任何连续的周期函数f(t),f(t)=f(t+ω),方程组(1)有惟一的周期解(周期为ω)的充要条件是矩阵X(ω)=[x1 (ω)…xn (ω)]没有等于1的特征根。

证明方程dx/dt=Ax(A为n×n实矩阵)有以ω(ω≠0)为周期的周期解的充要条件是系数矩阵A至少有一个形如i 2πμ/ω的特征根,其中μ为整数。