在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的积分∫L(1+y3) dx+(2x+y)dy的值最小.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的积分∫L(1+y3) dx+(2x+y)dy的值最小.
记L(a)为曲线y=asinx,0≤x≤π,则L(a)=∫L(a)(1+y3) dx+(2x+y)dy =[1+a3sin3x+(2x+asinx)acosx] dx =4/3 a3-4a+π.令L' (a...
查看完整答案求∭Ω(x2+y2+z)dV,其中Ω是由曲线绕z轴旋转一周而成的曲面与平面z=4所围成的立体.
设n是曲面2x2+3y2+z2=6在点P(1,1,1)处的指向外侧的法向量,求函数u=/z在点P处沿方向n的方向导数.
设n阶方阵A,B,C满足关系式ABC=E,其中E是n阶单位矩阵,则必有【 】
设D是xOy平面上以(1,1),(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则∬D(xy+cosxsiny)dxdy等于【 】
已知级数(-1)n an=2,a2n-1 =5,则an 等于【 】
若连续函数f(x)满足关系式f(x)=f(t/2)dt+ln2,则f(x)等于【 】
随机地向半圆0<y<(a为常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积与正比,则原点和该点的连续与x轴的夹角小于π/4的概率为__________.
设D由y=sinπx(0≤x≤1)与x轴转成,则D绕x旋转的旋转体体积为__________.
设F=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)k.求:F沿螺线r=acost∙i+asint∙j+bt∙k的一段(t:0→π/4)所作的功.
计算第二型曲面积分x(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy其中Σ为球面x2+y2+z2=1的外侧.
求曲面积分I=∬S yzdzdx+2dxdy,其中S是球面x2+y2+z2=4外侧在z≥0的部分.
设Σ为空间区域{(x,y,z)|x2 + 4y2≤4,0≤z≤2}表面的外侧,则曲面积分∬Σx2dydz + y2dzdx + z2dxdy=______.
设D⊂R2是有界单连通闭区域,I(D)=(4-x2-y2)dxdy取得最大值的积分区域记为D1.(1) 求I(D1 )的值.(2) 计算,其中∂D1是D1的正向边界.
设Γ是上半球面x2+y2+z2=R2 (z≥0)上的光滑曲线,起点和终点分别在平面z=0,z=R/2上,曲线的切线与z轴正方向的夹角为常数α∈(0,π/6),求曲线Γ的长度.
设L为取正向的圆周x2+y2=9,则曲线积分∮L(2xy-2y)dx+(x2 - 4x)dy=________.
设平面L是下半圆周y=-,则曲线积分∫L(x2+y2)ds=________.
求I=∫L[exsiny-b(x+y)]dx+(excosy-ax)dy,其中a,b为常数,L为从点A(2a,0)沿曲线y=到点O(0,0)的弧.
求∫Cx2ds,其中C为x2+y2+z2=a2 (a>0)与z=的交线.
计算积分∬SzdS,其中S为曲面x2+z2=2az(a>0)被曲面z=所截的部分.
计算曲线积分∮C(z-y)dx+(x-z)dy+(x-y)dz,其中C是曲线从z轴正向往z轴负向看,C的方向是顺时针的.
设L为椭圆x2/4+y2/3=1,其周长记为a,则∮L(2xy+3x2+4y2)ds=__________.
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有2xydx+Q(x,y)dy=2xydx+Q(x,y)dy,求Q(x,y).
设曲线积分∫L[f(x)-ex]sinydx-f(x)cosydy与路径无关,共中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于【 】