设F=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)k.
求:F沿螺线r=acost∙i+asint∙j+bt∙k的一段(t:0→π/4)所作的功.
设F=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)k.
求:F沿螺线r=acost∙i+asint∙j+bt∙k的一段(t:0→π/4)所作的功.
暂无答案
求级数xn/(ln(n!))的收敛半径,并讨论收敛区间端点的收敛情况.
设f(x)=nx(1-x)n(n为自然数),求(1) f(x)在[0,1]上的最大值M(n)={f(x)}.(2)求M(n).
求解理想不可压缩流体绕圆柱流动的速度势函数u(r,θ),满足urr+1/r ur+1/r2 uθθ,r>a(半径为a的圆外区域),ur (a,θ)=0,u=Vrcosθ,V为常数.
求解热传导方程定解问题。ut=uxx-2u 0<x<π,t>0,u(x,0)=sinx,u(0,t)=0,u(π,t)=0.
求解波动方程定解问题。4utt=25uxx -∞<x<+∞,t>0,u(x,0)=sin2x,ut (x,0)=0.
用数学归纳法证明:对于复n维空间Vn上任意多个两两可交换的线性变换所组成的集合S具有公共的特征向量.
设对角矩阵A的特征多项式为 φ(λ)=(λ-λi)ni (诸λi两两互异),求所有和A可交换的矩阵全体所组成的线性空间的维数.
求第二类曲线积分∫Ly/(x2+y2)dx-x/(x2+y2)dy,其中L为椭圆x2+1+4y2-4x=0,方向为逆时针.
设D由y=sinπx(0≤x≤1)与x轴转成,则D绕x旋转的旋转体体积为__________.
确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x4+y2 )λ i-x2 (x4+y2 )λ j为某二元函数u(x,y)的梯度,并求u(x,y).
计算曲面积分I=∬Σ (axdydz+(z+a)2dxdy)/(x2+y2+z2 )1/2 ,其中Σ为下半球面z=-的上侧,a为大于零的常数.
设S为椭球面x2/2+y2/2+z2=1的上半部分,点P(x,y,z)∈S,π为S在P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面π的距离,求∬Sz/(ρ(x,y,z)) dS.
已知平面区域D={(x,y)|y-2≤x≤,0≤y≤2},计算I=∬D(x-y)2/(x2+y2)dxdy.
已知曲线L的极坐标方程为r=sin3θ(0≤θ≤π/3),则L围成有界区域的面积为__________.
设Γ是上半球面x2+y2+z2=R2 (z≥0)上的光滑曲线,起点和终点分别在平面z=0,z=R/2上,曲线的切线与z轴正方向的夹角为常数α∈(0,π/6),求曲线Γ的长度.
求I=∫L[exsiny-b(x+y)]dx+(excosy-ax)dy,其中a,b为常数,L为从点A(2a,0)沿曲线y=到点O(0,0)的弧.
求∫Cx2ds,其中C为x2+y2+z2=a2 (a>0)与z=的交线.
计算积分∬SzdS,其中S为曲面x2+z2=2az(a>0)被曲面z=所截的部分.
设D⊂R2是有界单连通闭区域,I(D)=(4-x2-y2)dxdy取得最大值的积分区域记为D1.(1) 求I(D1 )的值.(2) 计算,其中∂D1是D1的正向边界.
计算曲线积分∮C(z-y)dx+(x-z)dy+(x-y)dz,其中C是曲线从z轴正向往z轴负向看,C的方向是顺时针的.
设L为椭圆x2/4+y2/3=1,其周长记为a,则∮L(2xy+3x2+4y2)ds=__________.
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有2xydx+Q(x,y)dy=2xydx+Q(x,y)dy,求Q(x,y).