在变力F=yzi+zxj+xyk的作用下,质点由原点沿直线运动到椭球面x2/a2 +y2/b2 +z2/c2 =1上第一卦限的点M(ξ,η,ζ),问当ξ,η,ζ取何值时,力F所做的功W最大?并求出W的最大值.
在变力F=yzi+zxj+xyk的作用下,质点由原点沿直线运动到椭球面x2/a2 +y2/b2 +z2/c2 =1上第一卦限的点M(ξ,η,ζ),问当ξ,η,ζ取何值时,力F所做的功W最大?并求出W的最大值.
直线OM的参数方程为x=ξt,y=ηt,z=ζt,t从0到1,则W=yzdx+zxdy+xydz=3ξηζt2 dt=ξηζ.下面用拉格朗日乘法求W=ξηζ在条件ξ2/a2 +η2/b2 +ζ2/c2 =1下的最大值.令F(ξ,η,ζ,λ)=ξηζ+λ(ξ2/a2 +η2/b2 +ζ2/c2 -1),令,由前三个方...
查看完整答案已知f''(x)<0,f(0)=0,证明对任何x1>0,x2>0,恒有f(x1+x2)<f(x1)+f(x2)成立.
计算曲面积分I=∬Σ(x3+az2)dydz+(y3+ax2)dzdx+(z3+ay2)dxdy,其中Σ为上半球面z=的上侧.
设f(x)在(-∞,+∞)内连续可导,且m≤f(x)≤M,a>0.(1)求1/(4a2)[f(t+a)-f(t-a)]dt;(2)求证:|1/2af(t)dt-f(x)|≤M-m.
将长为a的铁丝切成两段,一段围成正方形,另一段围成圆,问这两段铁丝长各为多少时,正方形与圆的面积之和为最小?
作函数y=6/(x2-2x+4),并填写表.单调增加区间:单调减少区间:极值点:极值:凹区间:凸区间:拐点:渐近线:
计算第二型曲面积分∬S,其中S是下半球面z=-的下侧,a>0是常数.
设S是x2+y2+z2=1的外侧,计算∬Sx(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy
曲线(x2 + y2)2 = x2 - y2 (x≥0,y≥0)与x轴围成的区域为D,求xydxdy.
设有界区域D是圆x2 + y2 = 1和直线y=x以及x轴在第一象限围成的部分,计算二重积分(x2 - y2)dxdy.
计算(sin(x3y)+x2y)dxdy,其中D由y=x3,y=-1和x=1围成的有限闭区域.
计算:∮cdz/((z2+1)(z2+z+1)),其中c:为|z|<1.
设F=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)k.求:F沿螺线r=acost∙i+asint∙j+bt∙k的一段(t:0→π/4)所作的功.
设Γ是上半球面x2+y2+z2=R2 (z≥0)上的光滑曲线,起点和终点分别在平面z=0,z=R/2上,曲线的切线与z轴正方向的夹角为常数α∈(0,π/6),求曲线Γ的长度.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的积分∫L(1+y3) dx+(2x+y)dy的值最小.
设D⊂R2是有界单连通闭区域,I(D)=(4-x2-y2)dxdy取得最大值的积分区域记为D1.(1) 求I(D1 )的值.(2) 计算,其中∂D1是D1的正向边界.
设L为取正向的圆周x2+y2=9,则曲线积分∮L(2xy-2y)dx+(x2 - 4x)dy=________.
设平面L是下半圆周y=-,则曲线积分∫L(x2+y2)ds=________.
求I=∫L[exsiny-b(x+y)]dx+(excosy-ax)dy,其中a,b为常数,L为从点A(2a,0)沿曲线y=到点O(0,0)的弧.
计算曲线积分∮C(z-y)dx+(x-z)dy+(x-y)dz,其中C是曲线从z轴正向往z轴负向看,C的方向是顺时针的.