由曲线y=y(x)=(-√3<x≤0)和射线y=-√3 x(x≤0),以及由曲线y=y(x)=(-√3<x≤0)和射线y=-√3 x(x≤0),直线x=-√3围成了两块平面图形F1和F2(其中,F1的边界长度为有限值,而F2的边界长度为无穷大).
(1)计算出平面图形F1的面积S1=?
(2)计算出平面图形F2的面积S2=?
提示:采用平面极坐标(r,θ)作计算较为简单.
[不定积分公式:∫tg2θdθ=tgθ-θ+C可直接引用]
由曲线y=y(x)=(-√3<x≤0)和射线y=-√3 x(x≤0),以及由曲线y=y(x)=(-√3<x≤0)和射线y=-√3 x(x≤0),直线x=-√3围成了两块平面图形F1和F2(其中,F1的边界长度为有限值,而F2的边界长度为无穷大).
(1)计算出平面图形F1的面积S1=?
(2)计算出平面图形F2的面积S2=?
提示:采用平面极坐标(r,θ)作计算较为简单.
[不定积分公式:∫tg2θdθ=tgθ-θ+C可直接引用]
暂无答案
设f(x)=t|t|dt.求曲线y=f(x)与x轴所围成封闭图形的面积.
点A位于半径为a的圆周内部,且离圆心的距离为b(0≤b<a),从点A向圆周上所有点的切线作垂线,求所有垂足所围成的图形的面积.
(1)证明初值问题与y(x)=y0+f[t,y(t)]dt等价;(2)若对上式中的积分用辛普生公式,试导出相应的计算格式;并针对初值问题给出计算格式。
从原点向抛物线y=x2+x+1引两条切线,求此二切线与抛物线围成的面积。
试求由曲线y=ex下方,经过坐标原点作y=ex的切线的左侧以及x轴上方构成的图形面积。
求由圆柱面x2+y2=a2,x2+z2=a2 (a>0)所围立体的体积.
设抛物线y=ax2+bx+c过原点,当0≤x≤1时,y≥0.又已知抛物线与x轴及直线x=1所围成图形的面积为1/3,试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
已知S={(x,y,z)│x2+4y2+9z2=1,z≤0}取下侧,求∬S(yez+x)dydz+(zex+y)dzdx+(xcosxy+z)dxdy
设S是x2+y2+z2=1的外侧,计算∬Sx(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy
设平面有界区域D位于第一象限,由曲线x2+y2-xy=1,x2+y2-xy=2与直线y=√3 x,y=0围成,计算∬D1/(3x2+y2 ) dxdy.
设S是单位球面x²+y²+z²=1被锥z>所截部分曲面,定向取球外侧为正向,则对于F=(xy+cosz)i+(-xy-x² )j+(x+2z²)k,曲面积分∬SFdS=________.
f(x)满足∫f(x)/dx = 1/6·x2 - x + C,L为曲线y=f(x)(4≤x≤9),L的弧长为s,L绕x轴旋转一周所形成的曲面的面积为A,求s和A.
曲线(x2 + y2)2 = x2 - y2 (x≥0,y≥0)与x轴围成的区域为D,求xydxdy.
设有界区域D是圆x2 + y2 = 1和直线y=x以及x轴在第一象限围成的部分,计算二重积分(x2 - y2)dxdy.
计算(sin(x3y)+x2y)dxdy,其中D由y=x3,y=-1和x=1围成的有限闭区域.
求第二类曲线积分∫Ly/(x2+y2)dx-x/(x2+y2)dy,其中L为椭圆x2+1+4y2-4x=0,方向为逆时针.
设D由y=sinπx(0≤x≤1)与x轴转成,则D绕x旋转的旋转体体积为__________.
已知曲线L的极坐标方程为r=sin3θ(0≤θ≤π/3),则L围成有界区域的面积为__________.
设Γ是上半球面x2+y2+z2=R2 (z≥0)上的光滑曲线,起点和终点分别在平面z=0,z=R/2上,曲线的切线与z轴正方向的夹角为常数α∈(0,π/6),求曲线Γ的长度.
计算积分∬Sx3 dydz+y3 dzdx+z3 dxdy,其中S为球面x2+y2+z2=a2 (a>0)的外侧.
计算 ∬∑x3dydz,其中∑: x2/a2 +y2/b2 +z2/c2 =1,z≥0,取外侧.
已知S:(x-5)2+2y2+2(z+1)2=3,方向取外侧,计算∬S((x-5)dydz+ydzdx+zdxdy)/[(x-5)2+y2+z2 ](3/2)