(1)证明初值问题与y(x)=y0+f[t,y(t)]dt等价;
(2)若对上式中的积分用辛普生公式,试导出相应的计算格式;并针对初值问题给出计算格式。
(1)证明初值问题与y(x)=y0+f[t,y(t)]dt等价;
(2)若对上式中的积分用辛普生公式,试导出相应的计算格式;并针对初值问题给出计算格式。
(1)由到y(x)=yf[t,y(t)]dt易得。对y(x)=y0+f[t,y(t)]dt两边求导得y'=f(x,y),又在y(x)=y0+f[t,y(t)]dt中令x=x0得y(x0)=y0.(2)...
查看完整答案对方程组,试问用Jacobi迭代和Gauss-Seidel迭代是否收敛?为什么?
设线性方程组Ax=b的系数矩阵A=。(1)试求能使Jacobi迭代法收敛的a的取值范围;(2)对该方程组写出Jacobi迭代格式(设b=(b1,b2,b3)T已知)。
设x0,x1,…,xn为n+1个互异的插值节点,li (x)(i=0,1,…,n)为拉格朗日基本插值多项式(也称为插值基本函数)。证明:(1) li (x)≡1;(2) li (x)xik≡xk.
若x=(-1,2,3,0,4),求‖x‖1,‖x‖2,‖x‖∞.
设Γ是上半球面x2+y2+z2=R2 (z≥0)上的光滑曲线,起点和终点分别在平面z=0,z=R/2上,曲线的切线与z轴正方向的夹角为常数α∈(0,π/6),求曲线Γ的长度.
若f(x):(0,π)→R连续,f(x)>0,f(π/2)=1,且对于任意的x∈(0,π)满足dt/(f2(t))=-cosx/(f(x)),求f(x)的表达式.
设函数f(x)在(-∞,+∞)上有二阶连续导数,证明:f'' (x)≥0的充要条件是:对任意不同的实数a,b,f((a+b)/2)≤1/(b-a)f(x)dx.
求曲线L:y=1/3 x3+2x(0≤x≤1)绕直线y=4/3 x旋转一周生成的旋转曲面的面积.
已知平面区域D={(x,y)|0≤y≤1/(x),x≥1}.(1)求D的面积;(2)求D绕x轴旋转所成旋转体的体积.
设f(x)=t|t|dt.求曲线y=f(x)与x轴所围成封闭图形的面积.
点A位于半径为a的圆周内部,且离圆心的距离为b(0≤b<a),从点A向圆周上所有点的切线作垂线,求所有垂足所围成的图形的面积.
设位于点(0,1)的质点A对质点M的引力大小为k/r2 (k>0,为常数,r为质点A与M之间的距离),质点M沿曲线y=自B(2,0)运动到O(0,0),求在此运动过程中质点A对质点M的引力所做的功.
由曲线y=sin3/2x (0≤x≤π)与x轴围成的平面绕x轴旋转而的旋转体的体积为【 】
双纽线(x2+y2)2=x2-y2所围成的区域面积可用定积分表示为【 】
曲线y=cosx(-π/2≤x≤π/2)与x轴所围成的图形,绕x轴旋转一周所成的旋转体的体积为【 】
设抛物线y=ax2+bx+c过原点,当0≤x≤1时,y≥0.又已知抛物线与x轴及直线x=1所围成图形的面积为1/3,试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
过点P(1,0)作抛物线y=的切线,该切线与抛物线及x轴围成一个平面图形.求此平面图形绕x轴旋转一周所成旋转体的体积.
求过曲线y=-x2+1上的一点,使过该点的切线与这条曲线及x,y轴在第一象限围成图形的面积最小,最小面积是多少?
求由曲线y=1+sinx与直线y=0,x=0,x=π围成的曲边梯形绕x轴旋转而成的旋转体体积V.
求由曲面(x2/a2 +y2/b2 +z2/c2 )2=x2/a2 +y2/b2 (a,b,c>0)所围成的空间区域的体积.