问答题(1999年理工数学Ⅰ

为清除井底的污泥,用缆绳将抓斗放入井底抓起污泥后提出井口(见图). 已知井深30m,抓斗自重 400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s 的速率从抓斗缝隙中漏掉,现将抓起污泥的抓斗提升至井口,问克服重力需做多少焦耳的功?(说明:①1Nx1m=1J;其中m,N,s,J分别表示米,牛顿,秒,焦耳.②抓斗的高度及位于井口上方的缆绳长度忽略不计.)

答案解析

建立坐标轴如图所示,将抓起污泥的抓斗提升至井口需做功W=W1+W2+W3 其中W1是克服抓斗自重所做的功; W2是克服缆绳重力所做的功; W3是为提出污泥所做的功.由题意知W1=400×30=12000.将抓斗由x处提升到x+dx处,克服缆绳重力所做的功为dW2=50(30-x)dx,从而...

查看完整答案

讨论

设实变量的复值函数u(x,t)满足Cauchy初值问题iut+uxx=0,-∞<x<+∞,t>0,其中i=√(-1),u(x,0)=f(x)为已知函数且满足|f(x)|2 dx=1.(1)求证对任意的t>0,有|u(x,t)|2 dx≡1.(2)求证此问题在L2空间中的解是唯一的.(3)求谐波解u=aei(kx-ωt)(其中,a,k,ω均与自变量x,t无关且k为实数)的色散关系,讨论谐波是否耗散,是否色散,求出谐波的相速度和群速度(以k表达).(4)用Fourier变换法求出解的积分表达式.

设位于点(0,1)的质点A对质点M的引力大小为k/r2 (k>0,为常数,r为质点A与M之间的距离),质点M沿曲线y=自B(2,0)运动到O(0,0),求在此运动过程中质点A对质点M的引力所做的功.

求由曲线y=1+sinx与直线y=0,x=0,x=π围成的曲边梯形绕x轴旋转而成的旋转体体积V.

求过曲线y=-x2+1上的一点,使过该点的切线与这条曲线及x,y轴在第一象限围成图形的面积最小,最小面积是多少?

由曲线y=sin3/2⁡x (0≤x≤π)与x轴围成的平面绕x轴旋转而的旋转体的体积为【 】

双纽线(x2+y2)2=x2-y2所围成的区域面积可用定积分表示为【 】

曲线y=cosx(-π/2≤x≤π/2)与x轴所围成的图形,绕x轴旋转一周所成的旋转体的体积为【 】

求心形线r=a(1+cosθ)的全长,其中a>0是常数.

设抛物线y=ax2+bx+c过原点,当0≤x≤1时,y≥0.又已知抛物线与x轴及直线x=1所围成图形的面积为1/3,试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.

过点P(1,0)作抛物线y=的切线,该切线与抛物线及x轴围成一个平面图形.求此平面图形绕x轴旋转一周所成旋转体的体积.