问答题(2017年全国大学生决赛)

n-1/2 的整数部分.

答案解析

记σ=n-1/2 .由图(1)可知:曲线y=1/√x与x=1,x=100,y=0所围曲边梯形的面积大于它下方的99个长条矩形的面积之和(1/√n∙1) ,于是σ=1+(1/√n∙1) <1+1/√x dx=1+2√x=1+18=19 由图(2)可知:图中99个长条...

查看完整答案

讨论

设位于点(0,1)的质点A对质点M的引力大小为k/r2 (k>0,为常数,r为质点A与M之间的距离),质点M沿曲线y=自B(2,0)运动到O(0,0),求在此运动过程中质点A对质点M的引力所做的功.

为清除井底的污泥,用缆绳将抓斗放入井底抓起污泥后提出井口(见图). 已知井深30m,抓斗自重 400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s 的速率从抓斗缝隙中漏掉,现将抓起污泥的抓斗提升至井口,问克服重力需做多少焦耳的功?(说明:①1Nx1m=1J;其中m,N,s,J分别表示米,牛顿,秒,焦耳.②抓斗的高度及位于井口上方的缆绳长度忽略不计.)

由曲线y=lnx与两条直线y=e+1-x及y=0所围成的平面图形的面积是______.

求由曲线y=1+sinx与直线y=0,x=0,x=π围成的曲边梯形绕x轴旋转而成的旋转体体积V.

求过曲线y=-x2+1上的一点,使过该点的切线与这条曲线及x,y轴在第一象限围成图形的面积最小,最小面积是多少?

由曲线y=sin3/2⁡x (0≤x≤π)与x轴围成的平面绕x轴旋转而的旋转体的体积为【 】

双纽线(x2+y2)2=x2-y2所围成的区域面积可用定积分表示为【 】

曲线y=cosx(-π/2≤x≤π/2)与x轴所围成的图形,绕x轴旋转一周所成的旋转体的体积为【 】

求心形线r=a(1+cosθ)的全长,其中a>0是常数.

设抛物线y=ax2+bx+c过原点,当0≤x≤1时,y≥0.又已知抛物线与x轴及直线x=1所围成图形的面积为1/3,试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.