设A,B都是n阶复方阵,C=A+B,则det(C-AB)=det(C-BA).
设A是n阶复方阵,V1是A的行向量生成的Cn的子空间,V2是A的列向量生成的Cn的子空间,则V1=V2.
设A是2022阶可逆对称实方阵,则A必有2021阶非零主子式
设A,B都是n(n≥2)阶复方阵,则rank(AB)=rank(BA).
设R^3上的线性变换A(x)=x,则α=生成的A-循环不变空间的维数为________.
设=QR,其中Q是正交方阵,R是对角线元素大于0的上三角方阵,则R=________.
设A=,则A-1=__________,A2022=__________,A的最大奇异值σ1=__________.
设空间直角坐标系中的四点A(1,1,1),B(1,2,3),C(1,2,4),D(2,3,4),则点A到平面BCD的距离d=__________.
在平面直角坐标系中,椭圆x2+xy+y2=1的长轴方程为__________,位于x轴上半平面内的焦点坐标为__________.
三阶行列式有2个元素为4,其余为±1,则此行列式可能的最大值为________.
设γ1,γ2,α,β皆为三维列向量,A=(α,3γ1,3γ2 ),B=(β,γ1,2γ2)且|A|=18,|B|=4,则|A-B|=________.
设A=是实数域上的矩阵,证明:(1)如果|aii|>∑j≠i|aij|,i=1,2,…,n则|A|≠0;(2)如果aii>∑j≠i|aij|,i=1,2,…,n则|A|>0.
设f(x)=x3+6x2+3px+8,试确定p的值使f(x)有重根并求其根.
设A为n阶方阵,且A的行列式|A|=a≠0,而A*是A的伴随矩阵,则|A* |等于【 】
设4阶矩阵A=(α,γ2,γ3,γ4 ),B=(β,γ2,γ3,γ4),其中α,β,γ2,γ3,γ4均为四维列向量,且已知行列式|A|=4,|B|=1,则行列式|A+B|=________.