问答题(2005年重庆大学

设f(x)=x3+6x2+3px+8,试确定p的值使f(x)有重根并求其根.

答案解析

暂无答案

讨论

当λ,μ为何值时,方程组有惟一解?无解?有无穷解?无穷解时并求其全解.

重庆大学克拉默法则

已知A ̅和B ̅分别是三维空间中的矢量矩阵和单位方向矢量;A ̅=Ax+Ay+Az;( Ax=,Ay=,Az=B ̅=cosα+cosβ+cosγ;( cos2 α+cos2 β+cos2 γ=1)计算矩阵求和c=k(A ̅∙B ̅)k +2k (A ̅∙B ̅)2k.提示:首先考察(A ̅∙B ̅)2=?

四维矢量X采用列矩阵表示为:X=,其中,矢量X的四个分量x1,x2,x3,x4满足如下条件:,试证明:这样的四维矢量X存在“无穷多个”,并可一般表示为:X=ax1+bx2+1/2 x3;其中x1=,x2=,x3=;而a,b为“任意实数”.

设曲面:z=z(x,y)=(y-x2)2+√5/2 x2,柱壁面:9y-9x2+5=0,圆柱体:x2+y2≤1,在三维空间O-XYZ中的“点的集合”分别为G1,G2,G3.(1)说明“点集”:G=G1∩G2∩G3构成了在三维空间O-XYZ中的有限长度的曲线L.(2)采用“参数方程”:,[t∈T;(T为参变数t的“取值集合”)]表示出曲线L.(3)计算曲线L的“总长度”:L=?提示:(i)选择参变数t=x,(ii)考虑柱壁面:y=x2-5/9与圆柱面:x2+y2=1满足相交或满足相切?[不定积分公式:∫dx=x/2 +a2/2 ln⁡(x+)+C可直接引用]

计算二重积分:∬Dds其中,积分区域D为曲线y(x)=与直线y=0所围成的区域.提示:①首先考察曲线y=y(x)⟹F(x,y)=0为何种曲线,②然后采用“平面极坐标”方法作计算?

已知二元函数z=z(x,y):z(x,y)=1/4[4(tgx+tgy)2 - 12tgx∙tgy - 3],试求:二元函数z=z(x,y)在正方形区域:D ̅:-π/4≤x≤π/4,-π/4≤y≤π/4 里的最大值zmax=?和最小值zmin=?,并指出二元函数z=z(x,y)在闭区域D ̅里何点处取得最大值zmax和最小值zmin?

已知三个关于自变量x的函数:y=f(x),z=g(x),t=h(x),其“函数关系”由如下“隐函数方程组”确定出: (1)确定出y,z,t关于x的单值、连续的函数关系式(解析式):y=f(x)=?,z=g(x)=?,t=h(x)=?及其各函数的定义域{x}=?提示:求解函数方程以及求解其后问题时,令e10/3 - 1=2a,可便于计算分析处理。(2)求出函数y=f(x)的一阶导数:dy/dx=f' (x)=?及其可导区域{x}=?(3)给出函数y=f(x)的图像草图.提示:①首先,寻找出函数f(x)的三个“零点”:xk=?[其中,f(xk )=0;(k=1,2,3)],以及一阶导数函数f'(x)的两个“零点”:xl'=?[其中,f' (xl' )=0;(l=1,2)].②然后,考察函数f(x)的渐近性质.③最后,利用①②的结果,便可绘制出函数f(x)的图像草图[注意:“零点”方程f(xk )=0最终可化为关于xk的三次方程,可采用(分组分解法)因式分解后再作求解].

已知全体实的2维向量关于下列运算构成R上的线性空间V:(a1,b1 )+(a2,b2 )=(a1+a2,b1+b2+a1 a2),k∙(a,b)=(ka,kb+(k(k-1))/2 a2).(1)求V的一组基;(2)定义变换A(a,b)=(a,a+b),证明:A是一个线性变换;并求A在V的一组基下的矩阵表示.

设C=,求C101.