计算sinx/x dxdy,其中D是由直线y=x以及抛物线y=x2围成的区域。
设有界区域D是圆x2 + y2 = 1和直线y=x以及x轴在第一象限围成的部分,计算二重积分(x2 - y2)dxdy.
计算(sin(x3y)+x2y)dxdy,其中D由y=x3,y=-1和x=1围成的有限闭区域.
计算曲面积分I=∬Σ (axdydz+(z+a)2dxdy)/(x2+y2+z2 )1/2 ,其中Σ为下半球面z=-的上侧,a为大于零的常数.
设S为椭球面x2/2+y2/2+z2=1的上半部分,点P(x,y,z)∈S,π为S在P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面π的距离,求∬Sz/(ρ(x,y,z)) dS.
已知平面区域D={(x,y)|y-2≤x≤,0≤y≤2},计算I=∬D(x-y)2/(x2+y2)dxdy.
计算积分∬Sx3 dydz+y3 dzdx+z3 dxdy,其中S为球面x2+y2+z2=a2 (a>0)的外侧.
计算 ∬∑x3dydz,其中∑: x2/a2 +y2/b2 +z2/c2 =1,z≥0,取外侧.
已知S={(x,y,z)│x2+4y2+9z2=1,z≤0}取下侧,求∬S(yez+x)dydz+(zex+y)dzdx+(xcosxy+z)dxdy
已知S:(x-5)2+2y2+2(z+1)2=3,方向取外侧,计算∬S((x-5)dydz+ydzdx+zdxdy)/[(x-5)2+y2+z2 ](3/2)
确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x4+y2 )λ i-x2 (x4+y2 )λ j为某二元函数u(x,y)的梯度,并求u(x,y).
求I=∫L[exsiny-b(x+y)]dx+(excosy-ax)dy,其中a,b为常数,L为从点A(2a,0)沿曲线y=到点O(0,0)的弧.
已知曲线L的极坐标方程为r=sin3θ(0≤θ≤π/3),则L围成有界区域的面积为__________.
求∫Cx2ds,其中C为x2+y2+z2=a2 (a>0)与z=的交线.
求∫C1/(xdx+ydy),其中C是从(1,0)到(0,2)的光滑曲线(不过原点).
计算积分∬SzdS,其中S为曲面x2+z2=2az(a>0)被曲面z=所截的部分.
求第二类曲线积分∫Ly/(x2+y2)dx-x/(x2+y2)dy,其中L为椭圆x2+1+4y2-4x=0,方向为逆时针.
设空间有界区域Ω中,柱面x²+y²=1与平面z=0和x+z=1围成,Σ为Ω边界的外侧,计算曲面积分I=∰Σ2xzdydz+xzcosydzdy+3yzsinxdxdy