计算积分∬Sx3 dydz+y3 dzdx+z3 dxdy,其中S为球面x2+y2+z2=a2 (a>0)的外侧.
设有界区域D是圆x2 + y2 = 1和直线y=x以及x轴在第一象限围成的部分,计算二重积分(x2 - y2)dxdy.
计算(sin(x3y)+x2y)dxdy,其中D由y=x3,y=-1和x=1围成的有限闭区域.
计算:∮cdz/((z2+1)(z2+z+1)),其中c:为|z|<1.
计算sinx/x dxdy,其中D是由直线y=x以及抛物线y=x2围成的区域。
计算∬Dxdxdy,其中D是以O(0,0),A(1,2),B(2,1)为顶点的三角形区域。
计算第二型曲面积分x(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy其中Σ为球面x2+y2+z2=1的外侧.
计算第二型曲面积分∬S,其中S是下半球面z=-的下侧,a>0是常数.
设∑为曲面x2+y2+z2=1的外侧,计算曲面积分I=∬∑ x3dydz+y3dzdx+z3dxdy.
计算曲面积分I=∬Σ(x3+az2)dydz+(y3+ax2)dzdx+(z3+ay2)dxdy,其中Σ为上半球面z=的上侧.
计算曲面积分I=∬∑x(8y+1)dydz+2(1-y2 )dxdz-4yzdxdy,其中∑是由曲线(1≤y≤3)绕y轴旋转一周而成的曲面,其法向量与y轴正向的夹角恒大于π/2.
向量场u(x,y,z)=xy2i+ye2j+xln(1+z2)k在点P(1,1,0)处的散度divu=________.
求曲面积分I=∬S yzdzdx+2dxdy,其中S是球面x2+y2+z2=4外侧在z≥0的部分.
设数量场u=ln,则div(gradu)=________________.
设L为取正向的圆周x2+y2=9,则曲线积分∮L(2xy-2y)dx+(x2 - 4x)dy=________.
设平面L是下半圆周y=-,则曲线积分∫L(x2+y2)ds=________.
设曲线积分∫Cxy2dx+yφ(x)dy与路径无关,其中φ(x)具有连续的导数,且φ(0)=0,计算xy2dx+yφ(x)dy的值.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的积分∫L(1+y3) dx+(2x+y)dy的值最小.