设数量场u=ln,则div(gradu)=________________.
求曲面积分I=∬S yzdzdx+2dxdy,其中S是球面x2+y2+z2=4外侧在z≥0的部分.
设4阶矩阵B=,C=,且矩阵A满足关系式A(E-C-1 B)T CT=E,其中E为4阶单位矩阵,C-1表示 C的逆矩阵,CT表示 C的转置矩阵,将上述关系式化简并求矩阵A.
若连续函数f(x)满足关系式f(x)=f(t/2)dt+ln2,则f(x)等于【 】
设n阶方阵A,B,C满足关系式ABC=E,其中E是n阶单位矩阵,则必有【 】
将函数f(x)=2+|x|(-1≤x≤1)展开成以2为周期的傅里叶级数,并由此求级数1/n2 的和.
计算第二型曲面积分∬S,其中S是下半球面z=-的下侧,a>0是常数.
设S是x2+y2+z2=1的外侧,计算∬Sx(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy
曲线(x2 + y2)2 = x2 - y2 (x≥0,y≥0)与x轴围成的区域为D,求xydxdy.
设有界区域D是圆x2 + y2 = 1和直线y=x以及x轴在第一象限围成的部分,计算二重积分(x2 - y2)dxdy.
计算(sin(x3y)+x2y)dxdy,其中D由y=x3,y=-1和x=1围成的有限闭区域.
f(x)满足∫f(x)/dx = 1/6·x2 - x + C,L为曲线y=f(x)(4≤x≤9),L的弧长为s,L绕x轴旋转一周所形成的曲面的面积为A,求s和A.
设D由y=sinπx(0≤x≤1)与x轴转成,则D绕x旋转的旋转体体积为__________.
设Γ是上半球面x2+y2+z2=R2 (z≥0)上的光滑曲线,起点和终点分别在平面z=0,z=R/2上,曲线的切线与z轴正方向的夹角为常数α∈(0,π/6),求曲线Γ的长度.