设4阶矩阵B=,C=,且矩阵A满足关系式
A(E-C-1 B)T CT=E,
其中E为4阶单位矩阵,C-1表示 C的逆矩阵,CT表示 C的转置矩阵,将上述关系式化简并求矩阵A.
设4阶矩阵B=,C=,且矩阵A满足关系式
A(E-C-1 B)T CT=E,
其中E为4阶单位矩阵,C-1表示 C的逆矩阵,CT表示 C的转置矩阵,将上述关系式化简并求矩阵A.
因为A(E-C-1 B)T CT=A[C(E-C-1 B)]T=A(C-B)T,于是有
A(C-B)T=E.
故A=[(C-B)T ]-1=.
设矩阵T=,T以及D可逆,证明(A-BD-1 C)-1存在,并求T-1,其中A,B,C,D为适当维度的矩阵。
设A为方阵,g(λ)是A的最小多项式,f(λ)为任意多项式.证明:f(A)可逆⇔(f(λ),g(λ))=1.
设矩阵A=,E=,则逆矩阵(A-2E)-1=________.
设矩阵A=仅有两个不同的特征值.若A相似于对角矩阵,求a,b的值,并求可逆矩阵P,使P-1AP为对角矩阵.
设A=E-ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置,证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A是不可逆矩阵.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.(1)证明B可逆;(2)求AB-1.
设4阶方阵A=,则A的逆矩阵A-1=____________.
若函数y=f(x)可导,且f'(x0)=1/2,则当∆x→0时,该函数在x=x0处的微分dy是【 】
设y=f(x)是方程y''-2y'+4y=0的一个解,且f(x0)>0,f' (x0)=0,则函数f(x)在点x0处【 】
证明:任一可逆的实矩阵A可以表示成A=QB,其中Q为正交矩阵,B是主对角线上元素均为正的三角形矩阵:B=,bii>0,且此表示式是惟一的。
设A∈Rm×n,rankA=r,证明存在可逆矩阵M∈Rm×m及正交矩阵P∈Rn×n,使得MAP= 其中Rm×n表示 m×n实数矩阵空间,Ir表示r×r单位矩阵,C∈Rr×(n-r)。
已知A=(1) 求正交矩阵P,使得PTAP为对角矩阵;(2) 求正定矩阵C,使得C2 = (a+3)E-A.
设α1,…,αn和β1,…,βn是线性空间V的两组基,V上的线性变换A把每个αi映成βi,i=1,…,n.证明:A在α1,…,αn下的矩阵和在β1,…,βn下的矩阵相等.
设=QR,其中Q是正交方阵,R是对角线元素大于0的上三角方阵,则R=________.