已知A=,B为三阶方阵,满足A2B=A+AB,求B。
设A=,B=且A与B相似.(1)求α,β的值;(2)求可逆阵P使P-1 AP=B.
设A是4×3矩阵,且A的秩r(A)=2,而B=,则r(AB)=________.
设A为3阶矩阵,交换A的第2行和第3行,再将第2列的-1倍加第1列,得到矩阵,则A-1的迹tr(A-1)=__________.
设A=,则A-1=__________,A2022=__________,A的最大奇异值σ1=__________.
设=QR,其中Q是正交方阵,R是对角线元素大于0的上三角方阵,则R=________.
设α1,…,αn和β1,…,βn是线性空间V的两组基,V上的线性变换A把每个αi映成βi,i=1,…,n.证明:A在α1,…,αn下的矩阵和在β1,…,βn下的矩阵相等.
已知α=[1,2,3],β=[1,1/2,1/3],设A=αTβ,其中αT是α的转置,则An=________________.
设A是2022阶可逆对称实方阵,则A必有2021阶非零主子式
设A = aij为3阶矩阵,Aij为代数余子式,若A的每行元素之和均为2,且|A| = 3,A11 + A21 + A31 = ______.
设A,B为n阶可逆矩阵,E为n阶单位矩阵,M*为M的伴随矩阵,则=【 】
设A=E-ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置,证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A是不可逆矩阵.
设A,A-E可逆,若B满足(E-(A-E)-1 )B=A,则B-A=______________.
设A,B都是n(n≥2)阶复方阵,则rank(AB)=rank(BA).
已知n阶矩阵A,B,C满足ABC=0,E是n阶单位矩阵,记矩阵,,的秩分别为γ1,γ2,γ3,则【 】
设n阶方阵A,B,C满足关系式ABC=E,其中E是n阶单位矩阵,则必有【 】
考虑循环矩阵A=证明:(1) A=a0 In+a1 T+a2 T2+⋯+an-1 Tn-1,其中T=In表示n×n单位矩阵。(2) T相似于对角矩阵。(3) A相似于对角矩阵。
设B为一r×r矩阵,C为一r×n矩阵.如果BC=C,问B=E是否成立?若成立,证明之;若不成立,举出反例,并给出使B=E的充要条件。其中E为单位矩阵.
设A是一个n×n实矩阵,秩(A)=1,证明A2=kA,其中k为一实数.
已知A=,B=满足(E-A-1B) XT=A-1(其中E为单位阵),试求X。